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ABSTRACT. We construct an algebraic-combinatorial model of the SOS compartment of
the EGFR biochemical network. A Petri net is used to construct an initial representation
of the biochemical decision-making network, which in turn defines a hyperdigraph. We
observe that the linear algebraic structure of each hyperdigraph admits a canonical set of
algebraic-combinatorial invariants that correspond to the information flow conservation
laws governing a molecular kinetic reaction network. The linear algebraic structure of the
hyperdigraph and its sets of invariants can be generalized to define a discrete algebraic-
geometric structure, which is referred to as an oriented matroid. Oriented matroids define
a polyhedral optimization geometry that is used to determine optimal subpaths that span
the nullspace of a set of kinetic chemical reaction equations. Sets of constrained submod-
ular path optimizations on the hyperdigraph are objectively obtained as a spanning tree
of minimum cycle paths. This complete set of subcircuits is used to identify the network
pinch points and invariant flow subpaths. We demonstrate that this family of minimal cir-
cuits also characteristically identifies additional significant biochemical reaction pattern
features. We use the SOS Compartment A of the EGFR biochemical pathway to develop
and demonstrate the application of our algebraic-combinatorial mathematical modeling
methodology.

1. INTRODUCTION

Living cells can sense their environment and respond to environmental stimuli. Cell
signaling governs how information from the environment is decoded, processed, and trans-
ferred so that the cell can adequately respond. Cell signaling mechanisms are defined by
sets of biochemical pathways that, in turn, physically define sets of chemical networks
made up of biochemical circuits. The biochemical pathways that define cell signaling
represent complex chemical kinetic phenomena. These pathways are a fundamentally im-
portant part of cellular communications and the basic principles of cell signaling seem to
be very similar in essentially all organisms.

One important example is signaling through the epidermal growth factor receptor (EGFR),
which regulates various cellular mechanisms, such as cell growth, survival, proliferation,
and differentiation. EGF receptors play an important role in mammalian development and
have also been implicated in tumor formation. EGFR is a member of the receptor tyrosine
kinase (RTK) family of receptors. The signaling pathways of various RTKSs are reason-
ably well established and have common underlying features such as phosphorylation of
the receptor and its interaction with signal transducing molecules containing the src ho-
mology domain or the phosphotyrosine binding domains. For EGFR, the signal from the
receptor is transmitted to the nucleus through a series of protein-protein interactions with
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the adaptor signaling molecules, through the MAP kinase cascade, and leads to Erk ac-
tivation, which controls the gene expression. A number of groups have been developing
computational approaches to modeling cell pathways, especially that of EGFR. See Bhalla
& lyengar (1999), Resat et al. (2003), Wiley & Cunningham (1981), Gex-Fabry & Lisi
(1984), Kholodenko et al. (1999), Bajzer et al. (1989), Lund et al. (1990), Sorkin et al.
(1991), French & Lauffenburger (1997), and Haugh & Lauffenburger (1998). These ap-
proaches have used available biochemical data and have focused on the time-dependence
of the various biochemical species that are generated and consumed.

Deviant behavior of a cell can be governed by a cell signaling path or network that is
out of control, e.g., leading to uncontrolled cell growth or death. Activation of the EGFR
network shown in Figure 1 can induce either cell division or differentiation depending on
the strength and duration of the signal. A basic understanding of inter- and intra-cellular
signaling processes and the biological response to changes in the signaling process is crit-
ical to our understanding of how cells and groups of cells, such as microbial communities
or mammalian tissues, respond to environmental insults.

Cell signaling, when viewed as an operational systems process model, is defined by the
hierarchical control-feedback mechanisms of complex chemical pathways. Computational
models serve as a means for integrating knowledge about a pathway and enabling the pre-
diction of cellular behavior. As part of our efforts to better understand cellular processes
and how information is being processed by the cell, we have been developing approaches
based on advanced graph theories where we do not need to know all of the kinetic infor-
mation required to completely model the chemical system. Rather, our approach enables
us to study how information is passed through the network based on its connectivity. Al-
though we do not get as much quantitative information from our approach, we do obtain
significant amounts of qualitative insights into the information processing of the cell. In
addition, our approach could be very useful in analyzing the network and connectivity in-
formation being generated in high-throughput experiments. See ldeker et al. (2001). Our
approach to modeling complex cellular networks is to use Petri nets based on graph the-
ory. Qualitative sets of inferences define the process control logic of a Petri net model
of biochemical reaction networks. In every biochemical reaction network, there exist sets
of reactions that define the conversion of biochemically reacting species. The replacement
and depletion of biochemical species is defined by the set of reactions. The transport of sets
of reacting species within a given network is directed by time-ordered sets of operational
inferences, the process control logic of the systems’ reaction network. We want to identify
the extremal (maximal and minimal) sets of sub-circuit paths of a given network in terms
of their exchange fluxes, subject to the conservation of system fluxes that act as the balance
laws for any chemical reaction pathway. Not every sub-circuit will, in fact, be principal
for the regulation of specific staged productions of metabolic species. Some sub-networks
will be purely catalytic, and yet others will define maximal and minimal accumulations of
metabolites and control pinch points which are analogous to set points in a control system
and are referred to as governors.

A critical issue with modeling cell signaling processes is that rarely are all of the rate
constants and equilibrium constants known. Thus, we need to develop new optimization
methods to search for the biochemical subcircuits that complete a pathway when there is
missing Kinetic data. We also need to develop new tools that let us understand the control
switching logic of biochemical networks. This information will enable us to develop new
experiments to better understand such networks. The long term goal of such models is
to be able to predict biochemical outcomes based upon perturbed biochemical networks.
We need to determine which processes need to be understood in detail so that we can
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FIGURE 1. The network of signaling pathways between components of
the EGF receptor system. Vertices are labeled based on the associated
compartment, as specified by Bhalla & lyengar. The pathways presented
in blue denote communication connections which are one-way; all other
pathways are bidirectional. The pathways which propagate the initial-
ization of the formation of the GTP:Ras complex, or Compartment A, to
the rest of the EGF network are highlighted in bold. The dashed arrows
indicate connections to components (D, I, and J) that function as sources
by converting a single species, while plain arrows indicate more com-
plex interactions. A complete listing of edges for the Bhalla & lyengar
model is given in Table 1.

experimentally study the most important of these processes. Thus, we need to develop a
fundamental understanding of the various reactions governing the biochemical pathways
and how they are coupled, from the initial signal-receptor interaction to the initial signal-
induced reaction to the various amplification steps to the final biological impact.
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TABLE 1. Edges between components of the EGF receptor system. A
graph representation is shown in Figure 1. Compartment B interacts
with twelve other EGF compartments; Compartment M interacts with
eleven others; Compartments C, E and N interact with ten others each;
Compartments F and K with nine others; G and H with seven; L and
O with six, A and | with four, J with three, and Compartment D with
only two interactions. The species through which the communications
between components act are indicated above the arrows describing the
direction of flow of information.
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2. MATHEMATICAL APPROACH

In order to demonstrate our approach, Compartment A of the EGFR signaling pathway
(as defined by Bhalla & lyengar) was selected as a rather small but substantive sub-network
for illustrative purposes. Our method is quite general and will work for any family of
coupled chemical rate equations. An advantage of our approach is that we only need
to know how species are connected but do not need to know the details of the chemical
processes, either equilibria or kinetics, in order to provide useful insights.

Our approach is to use Petri nets as a tool to understand network decision-making con-
trol processes based on connectivity. The concept behind a standard Petri net is that of a
set of counters that enumerate tokens as they are gradually moved from one place to an-
other subject to the satisfaction of a set of transition rules. This is simple counting. In this
paper, we extend and analyze Petri nets using hyperdigraphs that provably define oriented
matroids. Petri nets have associated S-invariants and T-invariants (associated with states
and transitions, respectively) coming from a linear algebra viewpoint; the important parts
of these invariants are the sign (). We can show that the S-invariants and T-invariants
define oriented matroids. The S-invariant and T-invariant duality provides a rich combi-
natorial algebraic-geometry representation theory. This duality can generate constrained-
based combinatorial optimization schemes for minimum-maximum information flow laws
that are characteristic of every signaling pathway [Oliveira et al. (to be published)]. These
pathway connections satisfy fixed point objective functions of multiset arrangements of
reactive chemical species. All optimizations of Petri net representations of cell signaling
pathways are constructed over this combinatorial geometry and use its metric to define the
objective functions for a given flow path optimization/regulation.

Oliveira et al. (2001) established that Petri nets define a class of hyperdigraphs whose
signed supports are identified with an oriented matroid. The oriented matroid associated
with the hyperdigraph representation of a Petri net is used to search for minimal cycles.
These minimal cycles represent the smallest (irreducible) subcircuits composed of places
and transitions that span the network. Places represent event locations in the net, and tran-
sitions (physical rules including rates or decision making rules that represent conditional
control laws) represent the rules governing the flow in the system. The topology of a Petri
net is completely specified by its incidence matrix, an algebraic matrix whose rows are
places and columns are transitions of the Petri net. All matrix entries are either 0, 1, or —1;
these quantities specify the absence or presence of a connecting edge between two places,
as well as its direction. The incidence matrix is equivalent to the Petri net. In addition to its
topology or connectivity, a Petri net at a given time has a state or marking that is specified
by the number of tokens in each place. Markings can be thought of as tokens representing
information. A place producing the information is referred to as a source; and a place
consuming the information is a sink. Flux conservation is achieved when the rate at which
tokens are being produced equals the rate at which tokens are being consumed. When the
flux, for a given firing sequence, starts and ends at the same point it is called a cycle. These
cycles are of interest because they represent the paths through which the network is pass-
ing as well as conserving information, cf. Oliveira et al. (2001, 2003). When a reaction or
series of reactions takes place, the corresponding transitions are said to have fired, and the
token numbers then change commensurate with the stoichiometry of the reaction.

S-Invariants and T-Invariants. Schuster et al. present an algorithm to find (in their ter-
minology) the elementary flux modes of a reaction network, cf. Schuster et al. (2000,
2002a and 2002b). These are exactly the minimal positive T-supports of the network.
Their algorithm is fast and effective. The algorithm is based (loosely) on the underlying
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oriented matroid as it is relies upon the underlying partial order of T-supports and uses
careful bookkeeping on the linear algebra side to keep track of the supports required. The
major difference between their algorithm and ours is that we are retaining the entire ma-
troid, determining all of the S-supports and T-supports, including but not limited to just the
minimal positive T-supports.

The Petri net approach introduced here provides us with an extensive set of combinato-
rial tools for deducing the qualitative control logic of biochemical networks. This approach
defines states in the system to be marked places and the tokens are colored with mark-
ings that symbolically represent concentrations of biomolecular species such as metabo-
lites, enzymes, and cofactors, etc.. In other words, the generation, storage and depletion
of biomolecular species that define the discrete compartmentalized components in a bio-
chemical reaction network are the corresponding colored balls or tokens that are arranged
into marked boxes or places of our Petri net. The pathways that define the “trajectories”
of reacting species through a biochemical reaction network correspond to graph cycles or
sub-network circuits of sets of reacting metabolites. The systematic nature of this mod-
eling approach studies the circuit arrangements or partitions of a biochemical network as
functions of marked balls (biochemical species) being arranged into marked places, subject
to a set of process control rules defined by the transition conditionals of the Petri net. The
tokens are symbolic representations of biomolecular concentrations.

Every linear system of chemical rate equations is subject to the conservation laws of
system flux. Every linear system of chemically balanced equations can be written as an
m % n conservation matrix A%, where » corresponds to the number of reacting species in
the chemical system and sz corresponds to the number of reactions that are taking place
within the chemical system.

For every system of biochemical reactions, the set of reactions that defines the system is
referred to as a set of fluxes. In deriving a systems analysis model, it is necessary to define a
boundary around the set of reactions. This boundary imposes a set of bounding conditions
for physically discretizing the system of chemical equations and, as such, defines two
classes of system fluxes: the internal set of system fluxes defined by the set of internal
sources and sinks that correspond to our sets of marked places in the Petri net model; and
the external fluxes which indicate the transport of the biochemical species e.g., metabolites,
that can exist outside of the bounded system as potential input sources to a new sub-system
of biochemical reaction equations. Note that each of the external fluxes has a positive
value.

The boundedness property of the Petri net representation identifies which combinations
of paths have intermediate maximum and minimum accumulations. This is the case since
we are enumerating multisets of molecular species into marked place holders subject to
reaction and conservation constraints. The arrangements define a partitioning of kinetic
reaction space that corresponds to the set of sub-circuits that span the network.

If we construct a Petri net model for the system of reactions, the transpose of the inci-
dence matrix Nt of the net is exactly this conservation matrix. We observe that the con-
servation matrix Nt is a linear transformation on the r-dimensional rational or {J*-vector
space. For every conservation matrix N*, there exists a set of stoichiometrically defined
basis vectors w, which is an n-vector of rational numbers known as the S-supports. A set
of S-supports is an S-invariant. If N* is an m x n matrix, the nullspace of N*, denoted by
N (N'*), consists of all vectors v in rational n-dimensional space, ™, such that

() Nie=0.
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It is important to note that the incidence matrix, A, is not invertible because of the Eulerian
nature of the network. We observe that the linear transformation defined by equation (1)
is a subspace of p*. The dimension of the nullspace of N'* depends on the rank of ¥,
where the rank r of N* is defined as the number of free variables that exist in the system
of equations that defines the matrix A'®.

2 r+ NN =m.
An S-invariant has as its dual a T-invariant, rz-vector of rational numbers w, such that
(3) Nw=10.

If equation (1) defines a linear algebraic balance equation that represents the stoichiomet-
ric conservation of system flux in the linear system of biochemical reaction equations,
then the matrix equation (1) is solved when we obtain the linear combination of linearly
independent basis vectors py, .. ., p, that spans the equational nullspace A (¥*) of the
conservation matrix A't.

When the dimension of the nullspace is small, it is a simple exercise to compute the
solution to equation (1). If the dimensionality of the system of linear conservation equa-
tions and hence the nullspace of equation (1) is large, then we have to use computational
methods to calculate a basis for the nullspace. The computational hardness associated with
computing all of the linearly independent sets of admissible solutions that span A (¥}
grows as the dimension of A*. It is notable that Petri net representations of signaling net-
works are scale-free. The Petri net model is therefore a combinatorial, scale-independent
representation of the multiscale physics defined by a system of chemical rate equations
which in turn defines a biomolecular signaling network.

We can construct a Turing complexity measure, in both time and space, that determines
how computationally hard it is in all generality to identify the principal sub-circuits within
a multicoupled biochemical signaling network. The best computational decision procedure
for finding principal sub-circuits in these types of networks is equivalent to the Hamilton-
ian circuit identification problem that is well-known to be NP hard. See Garey & Johnson
(1979). If we are missing any parametric data in the network then the circuit identification
problem computationally explodes superexponentially to become PSPACE hard. In sys-
tems analysis models, this case is often referred to as the circuit reachability problem. See
Oliveira et al. (2001) and Jones et al. (1977).

The nullspaces of equation (1) contain all of the solutions that satisfy the balance equa-
tions defined by (1). The principal problem is to be able to optimally generate the entire
nullspace and then search for all of the biochemically meaningful basis sets that span the
nullspace as linear combinations of sub-cycle paths. As indicated above, this nullspace cor-
responds to the space of cycles of some graph, and so we take biochemically meaningful
to mean a positive cycle or path.

Ideally, we want all minimal positive cycles. The method used in this paper is based
on a combinatorial geometric analysis of cycles in graphs. It first finds a suitable graph,
generates the cycle matroid, and translates back to find positive cycles in the Petri net. The
computational construction of the nullspace of interest requires that a decision procedure
exist that generates a set of signed vectors, those corresponding to the signed sets of tuples
that define an incidence matrix A'* that characterizes the state representation of the system
of equations, that in turn defines the biochemical reaction system. The algorithm must
efficiently generate a minimum number of linearly independent signed vectors that defines
a candidate basis set as a signed sub-cycle. The optimal search of an n-set of points in
)" space, that satisfies the dimensional requirements that the number of basis vectors
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necessary to define the basis set is equal to the dimensions of A'(¥*) C @™, is provably
polynomial. This is not true for finding an optimal set of basis vectors over R". The S-
invariants can also be used to identify the existence of all non-reachable sub-circuits in the
reaction network. We note that the reachability of one marked place to another marked
place in a Petri net is subject to the condition that all place markings are reachable when
the conservation of fluxes is defined by the network S-invariants. The T-invariants of the
network determine the set of conditional transitions that have to be evaluated to identify
the set of sub-circuits that span the entire reaction network as circuits. The T-invariants are
defined by an equation that is identified with equation (1), given by equation (3).

3. ANALYSIS OF COMPARTMENT A OF THE EGFR NETWORK

Model of EGFR Compartment A. We apply these methods to the SOS subreaction net-
work (Compartment A) of the EGFR pathway [Bhalla & lyengar (1999). This complex
biochemical process can be considered to be composed of two fundamental types of bio-
chemical building blocks, which are both noted to be reversible: molecular reactions and
complex formation. See Oliveira et al (2001, 2003). For example, an enzyme reaction
is composed of one molecular reaction and two complex formations. We have chosen
the Bhalla & lyengar model because it is a consistent representation for all fifteen com-
partments of the EGFR network. It is our intent to build the hyperdigraph mathematical
representations of all fifteen compartments and subsequently attempt to link them all to-
gether.

A graph representation of the communication between compartments of the EGFR sig-
naling network is presented in Figure 1. The edges represent shared species within the
network. Table 1 contains a listing of these edges. The edges have a directionality based
on a given compartment producing a species which is then distributed, as input, to other
compartments. In the case of neither compartment producing a given species, yet both
making use of it, there is an assumed bi-directional edge connecting the compartments to
illustrate sharing. In this way, we are able to model the control of the network in terms of
timing.

Thirty places and 46 transitions are required to specify Compartment A, and we note that
we are not tracking the ATP, ADP, water molecules of the reaction nor the CO5 released.
Our primary concern is with the connectivity of the network made up from biochemical
stencils. See Oliveira et al. (2001, 2003). Two place nodes are connected subject to
a transition node simply if it is possible for the second place to be reached from the first
place through some reversible physical/chemical mechanism. Of course, the actual amount
of chemical system reversibility may be very small and is dependent on the equilibrium
constant and/or kinetic rate constants. Since all of the reactions under consideration are
potentially reversible, then these paired sets of transitions are identified explicitly. The
implications of the complexity in the transition rules is deferred to a subsequent paper,
and, in this discussion, only the existence of the species moving through the places of
the pathways are indicated. In other words, we do not assign weights or probabilities
to the paths of the reactions; we only indicate the existence of the reaction paths and
their directions. We are not considering the quantities of molecular species present, the
equilibrium constants, their reaction rates, nor the timed sequence of events. Forward
paths are designated by directed solid lines and backward paths are designated by directed
dashed lines. Forward and backward paths are specified without prejudice, acknowledging
that one or the other of the paths may be significantly dominant. We consider that two
places, or even subreactions, are connected regardless of whether that communication of



10

J. S. OLIVEIRA, J. B. JONES-OLIVEIRA, D. A. DIXON, C. G. BAILEY, AND D. W. GULL

Place | Species Type
m Epidermal growth factor [EGF]
P2 Epidermal growth factor receptor [EGFR]

EGF : EGFR
P4 EGF : EGFRintsrna.ﬁzsd

Src homolog and collagen protein [SHC]

Phosphorylated SHC [SHC-P]

Phosphotase(1) [P’ase(1)]

SHC : EGF : EGFR

EGF : EGFR : SHC-P

SHC : P’ase (1)

P’ase(1) : SHC-P
P12 SHC-P : SOS : GRB2 Enzyme
P13 Guanosine diphosphate : Ras proteins [GDP : Ras] Protein
D14 Guanosine triphosphate : Ras [GTP : Ras]
Pis Ras GAP Enzyme
Pis GDP : Ras : SHC-P : SOS : GRB2
P17 SHC-P : SOS: GRB2: GTP : Ras
P1a GDP : Ras : Ras GAP
P1o Ras GAP : GTP : Ras
Pao SOS : GRB2
P21 Growth factor receptor binding protein 2 [GRB2] Protein 2
Pzz SOS* : GRB2

Son of sevenless homolog protein [SOS]

Phosphorylated SOS [SOS*]

Extracellular signal-regulated kinase-peroxisome proliferator [Erk-PP]

Phosphotase(2) [P’ase(2)]

SOS : Erk-PP

Erk-PP : SOS*

SOS : P’ase(2)

P’ase(2) : SOS*

TABLE 2. Petri net place definitions for Compartment A of the EGFR
network. Commonly used abbreviations are indicated in brackets. Note

the three groupings of two enzymes and a protein.

information is via a forward or a backward path or combinations thereof, indicating only
whether a physical connection is possible. Our assumption of reversibility of the system
requires the adding of extra edges to ensure that every connection between two places is
both forward and backward, i.e. a pair of edges.

Specifications of the Places. The list of 30 places is presented in Table 2. The places have
been color-coded according to the subreactions comprising the cycle. The places represent
the various key chemical species produced or consumed in the cycle. Note that there are
six enzymes in this compartment.
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2
EGF + EGFR #1 EGF: EGFR <~ EGF: EGFR_INTERNAL
3

SHC 44— SHC-P

SOS + GRB2 =~e—————> SOS : GRB2 ‘L's— SHC-P: SOS : GRB2

7
GDP : Ras GTP : Ras
8 9 | Erk-PP

SOS-P + GRB2 ~————= SOS-P : GRB2

FIGURE 2. Original Diagram of the MAPK Compartment A of RAS-RAF.

FIGURE 3. Petri Net Representation of original diagram of Compart-
ment A, EGFR pathway, with places and transition conditions labelled.
Note that the input signal from Compartment H is missing.

Petri Net Representation. A pictorial biological description is given in Figure 2, and the
Petri Net representation of the biology is given in Figure 3. The corresponding incidence
matrix is given in Table 3.

In the process of building the three representations — the biological, the Petri Net, and the
incidence matrix — several irregularities were discovered. In the biological representation,
there was no feedback of information from GAP:RAS and there were two uni-directional
pathways. In the Petri net representation, this led to the appearance of incomplete sub-
circuits leading to an imbalanced incidence matrix. The conservation of inputs and out-
puts for the entire network is obtained by demonstrating that either all column vectors,
or alternatively row vectors, of the connectivity matrix of sub-matrices must sum to zero.
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Fa Fa Fs F& pil Fs Fiz Fia Fis Fis Pir Peo Pzi Pez Poa Pza Pas For FPos

-T 1
1 —1|
1 1 -1
-1 -1 1
-1 1
1 -1
-1 -1 1
1 1 -1
-1 -1
-1 1 -1
1 -1 1
T 1 -1
-1 -1 1
-1 1
1 -1
-1 -1 1
1 1 -1
I -1 -1
-1 1 1‘
-1 1 -1
1 -1 1|
1 T -1
-1 -1 1
-1 1
1 -1
-1 -1 1
11 -1
1 -1

TABLE 3. Original transpose of the Incidence Matrix for Compartment
A, EGFR pathway. The matrix transpose is presented, rather than the
incidence matrix itself, for convenience.

Satisfying this condition implies that the incidence matrix of the network is balanced and
hence all of the corresponding sub-circuits are complete. If this condition is not true for the
incidence matrix representation of the network then the incidence matrix is said to be im-
balanced which leads to the existence of incomplete sub-circuits. In view of these facts, the
latter case was true. The sub-matrix blocks of the incidence matrix of the Compartment A
network were irregular (specifically, some sub-blocks were 7 x 5 while others were 6 x 5);
and Compartment H would have had no input location. We note that each column sum-
ming to zero is equivalent to having an S-invariant consisting of a vector of all ones. Upon
closer inspection, it was determined that the biological representation was incomplete; and
the Petri Net and incidence matrix pointed out precisely where the missing information
had to be included. Precipitated by the mathematical formulation, this resulted in revisions
to the network as depicted in Figures 4 and 5.

The biological network now includes the RasGAP enzymatic reaction and the Phos-
phatase (1) and (2) enzymatic reactions. The biological description is given in Figure 4,
and Figure 5 shows the associated Petri net. The incidence matrix is given in Table 4.
The now complete biological description of Compartment A is balanced biologically and
mathematically.

As shown in the Petri net representation in Figure 5, the dominant features are the three
double or paired enzymatic reactions. For example, consider the (ATP bound) EGF:EGFR
and the (ATP bound) P’ase(1) enzymatic reactions which act upon SHC and SHC-P. This
subnetwork is referred to as the SHC subreaction and is enlarged in Figure 14, presented
in the Appendix. The EGF:EGFR provides output to Compartment F in the overall EGFR
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1 2
EGF + EGFR ~———~ EGF: EGFR ~————> EGF: EGFR_INTERNAL
SHC ~e—-)— SHC-P
N>~/
P'ase (1)

SOS + GRB2 ~————= SOS : GRB2 ‘L——‘e SHC-P: SOS : GRB2

7
GDP : Ras GTP : Ras
8
Pase(2)|s X 10| ERK-PP >
RasGAP
SOS-P + GRB2~————= SOS-P : GRB2

FIGURE 4. Corrected Compartment A, EGFR pathway.

network. The second paired enzymatic reaction, referred to as the GDP:Ras subreaction,
is enlarged in Figure 15, also found in the Appendix. The species GTP:Ras provides
input to Compartment H, as well as communication with Compartment B. Finally, the
third paired reaction, the SOS subreaction, is enlarged in Figure 16 in the Appendix and it
receives input from Compartment H at species P’ase(2). As a convenience, care was given
in drawing the Petri net representation to minimize the number of pathway crossings. The
crossings within a pathway speak to the dimensionality of the network as a whole. There
is no reason to expect a naturally occurring biochemical network to be two-dimensional
or planar at any level. The associated incidence matrix sub-block structures in Table 4
are each now of like dimension, namely 12 x 8, and the structure of the incidence matrix
itself is block-banded, which is naturally advantageous for computational efficiency. We
observe that the biochemical systems analyzed thus far have exhibited similar inherent
symmetries and structures. When irregularities have been encountered, further inspection
has invariably led to the subsequent inclusion of missing species and reactions which have
resulted in this highly symmetric and block-banded structure.
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1

Fz

Fio

Fu

Fiz FPia Fia FPis

F1s

Py

il

Fis

Fzo

Fa

Fzz

Fza

Faq

Fas

Fzs

Far

Fzr  FPas

Fan

bz

bar
LEE
bz
tan
Lal
taz
baa
La']
bas
LBE
tar
ba
Las
L']ﬂ
bl
L']z
L']a
baq
bas
L']E

-1

-1

-1

-1

-1

-1

-1

-1 -1

=

-1

-1

-1

1
-1

SVHd1O 4493

TABLE 4. Corrected transpose of the Incidence Matrix, & ¢, for Compartment A of the EGFR pathway. Note that each 12 x 8
submatrix is composed of two opposite-signed & x 5 matrices; these are coupled enzymatic reactions, each of which is composed
of two complex formations and a molecular reaction. There are several 2 x 3 submatrices representing complex formations and a
2 x 2 matrix representing a molecular reaction.

1
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Computational Identification of the Minimal Cycles. The unique collection of distinct
minimal cycles is the complete listing of closed walks that collectively move information
through the network. The minimal pathways are the shortest, non-repeating, non-looping,
non-revisited paths. All other cycles in the hyperdigraph can be generated from linear com-
binations of the set of minimal cycles. Once the decomposition into this set of minimal cy-
cles has been identified, search strategies can be specified as linear objective functions over
the database; i.e., the flow network can then be analyzed to identify the set of paths which
are of particular interest via optimization analysis using path algebras, linear programming
and/or oriented matroid programming.

The process for determining the unique and complete set of minimal pathways begins
with specification of the directed connections between places through transitions, as de-
picted for Compartment A in Figure 5. This specification may be represented as a listing
of the directed arrows from places to transitions, as the incidence matrix, or as the Petri
net diagram. These directed connections are input to our computer code, MICAH for Ma-
troid Identification Code for the Analysis of Hyperdigraphs. To reduce the size of the
otherwise infinite nullspace to a manageably finite number, we have devised a search al-
gorithm, which we call “successive simplification”. The algorithm is heavily based on the
mathematical ideas presented in Oliveira et al. (2001). Beginning with the transpose of
the incidence matrix &, the Z3 nullspace A"(A*) has dimension m — » + 1, where m
is the number of transitions and » the number of places. Hence, the space has cardinality
2m—n+L For this example, m = 46 and n = 30, so the vector space has 217 elements. We
construct a faithful transformed digraph representation of the hyperdigraph, which has ex-
actly the same cycles as the Petri net. We next use the fact that the cycles of an undirected
graph form a Zq-vector space, which has the same nullspace as the original N'¢, given by
a Zg-matrix. The Zz-reduced nullspace has dimension less than m — n + 1. The basis
set is determined for the undirected graph using row reduction, and its minimal cycles are
determined using a spanning tree. A list of all cycles in the digraph may then be generated
with a simple backtracking search algorithm. A simple bookkeeping procedure is used to
keep track of the labels, i.e., the assignments of specific numerical entries in the undirected
graph are related to the appropriate places and transitions in the original hyperdigraph. Al-
though this can be a tedious process, a linear complexity order is still provably guaranteed.
Our reversibility assumption simplifies this process considerably as now every undirected
cycle gives rise to exactly two positive cycles, one in each direction. [Of course, our list
will contain non-minimal cycles; for example, figure eights may arise. We avoid listing
non-minimal cycles, not by checking for minimality, but by directly listing a minimal sub-
cycle of every cycle we find. This generates repetitions, which are easily removed later,
retaining a linear complexity order in both polynomial time and space. See Sipser (1997).]
The successive simplification algorithm is further developed below for this example.

A hyperdigraph representation of the Petri net is first constructed from the incidence
matrix that defines the Petri net. This hyperdigraph is then transformed into a multigraph
by replacing the transition nodes of the hyperdigraph with regular directed edges. Each
directed flow through a transition is replaced by a single directed labeled edge. Diagram-
matically, this transformation is demonstrated in Figure 6. We next transform this directed
multigraph into an undirected simple graph. This is accomplished by suppressing multiple
edges and removing directionality while retaining the labeled information. The process of
transforming the hyperdigraph to the multigraph results in the same number of vertices as
places, n = 0. However, in order to differentiate multiple paths through a given tran-
sition, 32 edges are added to the original 46, for a total of 78 edges. We next determine
that the basis size of the reduced nullspace of the transformed graph is ten, resulting in ten
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FIGURE 6. Transformation from a Petri net multigraph representation
of information flowing through a single transition to multiple places to a
simple Eulerian graph using labelled edges. Places got to vertices while
shared transitions go to individual edges.

78 x 1 vectors. This implies that there are 21° — 1 possible minimal cycles through the
undirected transformed graph or 21%+1 — 2 possible minimal cycles through the directed
graph. There exists a bijective correspondence between the set of edges in this simple
Eulerian graph and the set of obtainable two-cycles. Given this mapping, it then becomes
a simple exercise to enumerate all of the two-cycles. Once repeated edges have been elim-
inated from the undirected multigraph, a spanning tree is constructed from the graph. A
spanning tree of the undirected graph for Compartment A is given in Figure 7. Note that
there are 30 vertices and 29 edges. The identification of larger cycles, i.e., longer than the
two-cycles already in the listing, next requires the use of this spanning tree. By definition,
a fundamental cycle is a cycle having exactly one edge not contained in the spanning tree.
There exists a theorem which demonstrates the case that the addition of any edge to the
tree, which has no cycles, creates exactly one cycle, and so the set of fundamental cycles
is in one-to-one correspondence with the edges adjoined to the tree, cf. Gibbons (1985).
So, every edge which is not listed in the spanning tree of the simple Eulerian graph is now
added to generate a longer cycle, cf. Bachem & Kern (1991). Every edge is added to
the spanning tree, exhaustively. Each time a cycle is added to the listing, MICAH elimi-
nates from the listing any cycles which can be composed from combining any of the other
smaller cycles, thereby retaining only the shortest cycles. Each minimal cycle corresponds
to a nullvector of the incidence matrix of the transformed graph. There is an empty cycle
(i.e., with no edges) in the undirected graph and two empty cycles in the directed graph,
which the algorithm does not count. Finally, the minimal cycles of the hyperdigraph are
restored by reassigning direction using the retained labeled information.

The cycle listing generated in this way defines the set of irreducible minimal cycles.
The complete set of cycles of the hyperdigraph is obtained by taking linear combinations
of the set of minimal cycles. Observe that each linear combination generates two paths, one
forward and one backward. It follows that each of these minimal cycles spans the nullspace
of the incidence matrix of the original hyperdigraph. The final list of minimal cycles is
the smallest set of cycles required to compose any physically meaningful circuit that the
network system is capable of performing. This listing is guaranteed to be unique and
complete. In theory, all of the closed circuits achievable in this network may be composed
from the set of minimal circuits. In fact, the size of the directed characterizing data set is
considerably smaller than the theoretical value of 211

Unique Set of Distinct Minimal Cycles. MICAH first identifies just the 39 two-cycles be-
cause the algorithm suppresses multiple edges and would not identify them otherwise.
These same two-cycles can be recognized as all of the molecular reactions in the Petri net
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FIGURE 7. Spanning tree for EGFR Compartment A.

diagram, noting further that each complex formation contains two two-cycles and each en-
zyme reaction contains five two-cycles. We identify the remaining set of minimal cycles
by finding minimal subcycles inside every cycle, ignoring duplicates which are removed
from the listing via a script.

The resulting 39 two-cycles are given in Table 5 and the 44 other cycles are given in
Table 6, grouped by length. There are 10 pathways of length 3, 6 pathways of length 6,
16 pathways of length 7, and 10 pathways of length 8. It is interesting to note that there
are no pathways of length 4 or 5. The total number of distinct minimal cycles is nearly a
factor of twenty-five less than the theoretical number possible due to the removal of non-
minimal cycles. Setting aside the 0-cycle, all 83 of these minimal cycles, with their label
information, are required in combination to completely characterize Compartment A of the
EGFR network.
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| Cycle No. | Cycle Specification || Cycle No. | Cycle Specification

t t t E

la Pas - -» Pap ——» Pas 2l1a Pa—» ps -+ p3
tas tas ts tg

2a Pag - - Pza — Pao 22a Pg - -»Pp3 —+ pg
t t t &

3a Pao - - Prs — pao 23a Ps - -* ps — pa
tap tas te ta

4a Pza —* Pra - -* Pza 24a Pa —* Po - -* Pa
t t t t

Sa Prg — > Pas - -* Dig 25a P3 - orpg — pa
ta1 taz ts tin

6a Pag - -* Pag —= Pags 26a Ps --*Ppg — Ps
t t t t

7a Pan - - Pag —+ pan 27a P —> P11 - -* Ps
taa ta’r tlﬁ tlE

8a Pza - -% Pay —* Pza 28a Pr —* P11 - -* py
tzs tzs LEW taz

9a P18 —* P13 - -* 1A 29a P31 —* Pao - -* Pa:1
tag tas a1 taz

10a Pia — P15 - -* P18 30a Paa — Pao - -+ Paa
t t t t

11a P1s — s - Pis 3la P31 — D3z - FLA 1
taa taa taz taq

12a P1r — P12 - -* Py 32a Poa —* Pz - -+ Poa

13a p17 e, P14 22, P17 33a Par P, Pas LN Par
taa ta1 tas tag

14a Pir - - p1s — Py 34a Par - -* Paa — Par
t t t

15a P1a —* P15 - -* P13 35a P10 —* P5 - -* P10
t2n t1g tiz t11

16a Pia — Pis - -»* P13 36a Pio — P - -» P1o

17a P1s —tz—gr- P14 En- Fats) 37a pe Eﬁ- fiat] _151_8._ fi
28 t3I:| tl'? 18

18a P1s - -* P15 — Do 38a Pzo —* P12z - -* Pao

19a P —epg ey 39 P11 e p1o TP ppy
1 ta

20a Pz — pa - -» p=

TABLE 5. The labeled pathway listing of the 39 minimal two-cycles
cycles of EGFR Compartment A. The forward paths are indicated by
solid arrows and the backward paths are indicated by dashed arrows.
Each two-cycle is a loop from one place to another and then back to the
first via a forward and then a backward path, or vice versa.
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[ Number T Length | Cycle Specification
t t t
1b 3 Pan - Pzs - Pzs - Pan
t t t
2b 3 Pzs -3 Pzs =% Pao 3 Fzs
t t t
3b 3 Pzs -5 Pazr -2 Pza —5 FPzs
t t t
4b 3 FPzs -, Pzr -5 Pzs 25, FPza
tzo tz1 tza
5b 3 Fiz —* Pis —* Par —* Piz
t t t
6b 3 P17 -r pie - e piz -k pir
t t t
7b 3 Fis -5 Pis —=F Faia —% Fis
t t t
8b 3 FPis % Pis S Pas -5 Fia
s ta t5
9b 3 Pa --® Pg - - pg - - Pa
3 t 3
10b 3 Ps —> ps —% ps —% pa
t 3 3
11b 3 P11 — % pin —F pr —% P11
12b 3 pr e pig e pur S pr
tag, tas tag, tag Tan Pag
13b 6 Fao Pza * Pza Pzr Fza FPzs FPao
taz tas tar tan tag taa
14b 6 Fzs —® Pza —* Par —* Paa — % Pza —#* Pan —* Pzs
t t t t t t
15b 6 Pia =5 Fis =% pir % Fi1a 5 Pis i 8 ria =5 Pia
t t t t t t
16b 6 Fis - FPis 'Z'B" Fia - Pir -3 Fis s Fia - Pis
t t t t t
17b 6 Ps -1-1> Pio % pu S pe e ps fe ps e ps
18b 6 Fa —" Fa —1 Fs _i Fi1 —1 Fio _%' Fs _G> Fa
ty ta ta ta ta ty ty
1% 7 Pan -'ELPz-i—iPz: -SPPn—LPzn -‘ZFPza -}FPZB - Pan
t t t t t t t
20b 7 Fzs % Pza 4 Fzo =5 Fa =% Fzz e Fza =% Fao -3 Fzs
t t t t t t
21b 7 Fza —1 Pzz 34’ Fz1 e Fzo 32* Fza -2 Fzr 4 Pz 3 Fza
t t
22b 7 FPza _a_zL Fzr 5* FPza —L Fzo 2’ Fz1 —1 FPzz -4 Pza 3y FPza
tas tas tag tas
23b 7 Fza - -F Pza - -k Pzr - "‘ Fza - =S FPzs _" Fze —* Pao - -F Pz
t ta t t
24b 7 pan - w pae - ta1,, Pzs te3 pza —% par Loy P2z —F pza —F pao
t t t t t t t
25b 7 Fan -5 Fza - FPas -5 Pas =% Fazr -5 Fza = P2s e Fao
t t t t
26b 7 Fzs —%' FPza —i Fzr -5 FPzs -5 Fza 5 Fza —5 Fao —3 Fzs
t t t t t
27b 7 Pia —ll Pis '1-9" FPiz '2'3> Pir —21 Fia —31 Fis —21 Fia —zi Fia
t t t t t t
28b 7 FPis - -aL Fis - Fia -B Fir it 4 Faiz =5 FPis 15, Pia 5 FPia
t t t t t t t
29b 7 Pia —2F pic —2k pir —2b pia —F pis - R Pis -k pia —F pia
t2g tan tzs tza tzz tis tz2s
30b 7 Pig —* P15 —* Pis - ~* Pia - -F Fi¥ - -k Pig - -k Pia --F iz
3lb 7 ps Meopy MRog, 8o DS o0 B, o0 fE o S o
t t t t t t t
32b 7 Pa — Ps —% ps —% pu - pr e pu % ps —G" Pa
330 7 Pa--hps—'lps—ipu—ipm—ips—vpa ---Pa
34b 7 Ps -Te s e pin e pii S pe - Tk ps — pa —% Pa
ta ty ta ta ty ty ty ty
35b 8 Fza 23 Pzz 24 Fz1 -3 Fzo - g3 Fza - g8 Fzs —3 FPzs 5 Fao - e Fza
t t t t t t t t
36b 8 Pano S5 Pzs - Iz 43 Pza = Fzo 23 Fz1 — Pzz - Tza 5 Fao
t t t t t t t t
37b 8 FPza -2 Fzz 2 Fz1 =3 Pzo 5 FPza 2% Fzr -5, Fas -, FPza 25 Fza
t t t t 3 t t t
38b 8 pza —% pas —% par -k pza —F pzo -k Pai —F paz -k Pas -k pas
tag tan tag tas tal taz tag tag
39 8 FPza - -F Pzg —®* Pps —* Poay - -k Foa - -F Poy —#* Pag —* Pag - -k Pza
t t t t t t t t
40b 8 Fao -*5 Fzs - Fza % Fza 25 Pzr -5 Fzs -5 Fza —3 Fza % Fao
t t t t t t t t
41b 8 Pia —:“l Pis '1-9" FPiz 'Z'BF Pir —21 Fia —31 Fis '2'9" Fis 'Z'EF Fia —zi Fia
t t t t t t t t
42b 8 FPia =5 Fas 29 FPis -5, FPia - FPir =% Fiz = Fis -1-8“' Fia 25 Fia
s tig tig 15 t11 t1z ts5
43b 8 Pa -°k Py —+ Ps —* Pu Tk Pr - v Pig - Ps _"Pa""Pa
t t t t t t
44b 8 pa ~Twps e pip 2% pr 8py P8 pe e py gy S g,

TABLE 6. Labeled pathway listing of the remaining 44 minimal cycles.
Pathways listed in red are the nine positive forward-only cycles.
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FIGURE 8. Discrete distribution of the number of cycles of a given cycle
length. The two-cycles are the molecular reactions and the three-cycles
are the forward-only and backward-only paths through the enzymatic
reactions. Note that there is the indication of an emerging binomial dis-
tribution for the longer length cycles.

We observe that half of the cycles of length 3 presented in Table 6 are the forward-only
and half are the backward-only pathways through the enzymatic reactions. Similarly, half
of the cycles of length 6 are forward-only and half are backward only, through the paired
enzymatic reactions. The cycles of lengths 7 and 8 are mixed with some forward and some
backward paths, connecting the three paired enzymatic reactions.

Our study of additional biochemical networks has revealed a pattern where the number
of cycles of a given length is high for two-cycles and three-cycles and then drops off. The
remaining number of cycles of a given length is represented by the discrete analog of a
Gaussian distribution with many cycles of considerable length, as shown in Figure 8. This
pattern will be further and more dramatically substantiated in subsequent publications of
the analysis of other components of the larger EGFR network.

Frequency distributionsare next presented indicating the number of occurrences of each
transition (Table 7) or place (Table 8) in the list of minimal cycles. Extreme values in the
network analysis are of interest, be they valleys (i.e. infrequent occurences) or peaks (i.e.
frequent occurrence).
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| Transition | No. Occur. | Percent Occur. || Transition [ No. Occur. | Percent Occur. |

12 14.4 tas, tag 9 10.8
12 14.4 tag, tag 9 10.8
12 14.4 5 6.0
12 14.4 5 6.0
10 12.0 4 4.8
10 12.0 4 4.8
9 10.8 tz1,t2m 4 4.8
9 10.8 tor, tog 4 4.8
9 10.8 t1,ta 2 2.4
9 10.8 ti7,t18 2 2.4
{19,120 9 10.8 ta,ta 1 1.2
ton,toa 9 10.8

TABLE 7. EGFR Compartment A cycle transition counts. The transi-
tions are color-coded to match the subreaction identification. Note that
the paired transitions essentially split into two distinct categories: those
greater than 10% and and those less than 6%.

Transitions. There are 46 transitions required to specify the EGFR Compartment A net-
work. The transitions, the count of their occurrences in the 70 minimal cycles, and the
percentage of their occurrences in the 70 minimal cycles are presented in Table 7. They
are listed in order of decreasing occurrence. A bar plot for transitions 1 through 46 ver-
sus percentage of occurrence in the 70 minimal cycles is given in Figure 9 in the order of
transition number. Because we are assuming that all reactions are reversible with K = 1,
each pair of transitions occurs with the same frequency, as shown in Table 7 and Figure
9. We have listed the transition occurrences in pairs; however, in subsequent analyses for
which the equilibrium constant equal to one assumption will not be made, the values will
obviously be different. At this point, we are merely looking at the possible pathways along
which information can flow.

The key features in the transition bar plot enable us to assign and compare the low
number of transitions with the high number of transitions. A low percentage of transitions
means that information does not pass as readily in these parts of the cycle and a high
percentage means that these transitions are readily passing information. This assumes that
the equilibrium constants are unity as well as the rate constants.

The first set of transition pairs that occur most frequently are (a5, tas); (fas, ta0); (fa1,ta3);
and (ta5,%4g). These transitions are the activation of SOS either through P’ase(2) or ERK-
PP via phosphorylation reactions. We note that the ERK-PP is coupled to both the E and
H Compartments. The next most likely transitions involve the actuation of GRB2 and
formation of SOS*:GRB2. The middle set of transitions occurring at approximately 11%
frequency are those in the SHC subnetwork and in the GDP:Ras subnetworks. The first set
of low valued transitions is associated with the internalization of EGFR. The internaliza-
tion leads to subsequent biochemistry and our results clearly show that the rate at which
this occurs will be important as this serves as the control point for subsequent reactions.
The next set represents the formation of the EGF:EGFR complex as expected as this is the
initiation step in the cycle. As observed previously, initiation steps tend to occur with low
frequency as they are not coupled to many cycles. The final set corresponds to flux flowing
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FIGURE 9. Transition occurrence bar plot. The distribution demon-
strates extremal bounds. In other words, the data falls into two bins:
above 8% and below 6%. This indicates the existence of a Bernoulli
process.

from the SHC subreaction to the GDP:Ras subreaction effectively defining the branching
ratio leading to SHC formation. It is interesting to note that there is not a high percentage
occurrence with any of the transitions and that 15 out of the 23 pairs of transitions are in
the range of 11 - 14% at the high-end. Only one transition pair (ta,%4) occurs only once
and it is involved with the internalization of the EGF:EGFR complex. Basically, except for
a few low spots as described above, once the cycle in initiated it sustains itself as shown
in Figure 9. The lower values are usually associated with formation of larger complexes
(molecular machines).

Places. Thirty places specify the EGFR Compartment A network. The places, the count
of their occurences in the 83 minimal cycles, and the percentage of their occurrences in
the set of 83 minimal cycles are presented in Table 8. The table is presented in descending
order of occurrence. A bar plot for places 1 through 30 versus percentage of occurrence in
the 83 minimal cycles is presented in Figure 10. The plot is presented in order of ascending
place number.

There are a number of places that have a high percentage of occurrences, although
no places appear in greater than 25 percent of the minimal cycles. As expected, from
the transitions, the highest percentages are those associated with psa and ps4, which are
SOS and SOS*, followed by p=7 through pag, which are the complexes SOS:Erk-PP, Erk-
PP:SOS*, SOS:P’ase(2) and P’ase(2):SOS*, respectively. The next highest percentages
involve the SHC and Ras complexes. As expected from the transition data, places pq,
pz and p4, corresponding to EGF, EGFR and EGF:EGFR; . term aiized, appear least often.
This is consistent with the fact that the signal process is initialized by binding of EGF to
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| Place | No. Occur. | Percent Occur. || Place | No. Occur. | Percent Occur. |

19 22.9 11 13.3
19 22.9 Pao 11 13.3
17 20.5 10 12.0
17 20.5 Pz 10 12.0
17 20.5 P1a 10 12.0
17 205 P1a 10 12.0
13 157 Pz 10 12.0
13 15.7 Paz 10 12.0
13 15.7 10 12.0
13 15.7 10 12.0
P15 13 157 8 96
P17 13 15.7 ™Ms 8 9.6
p1a 13 157 ) 1 12
p1o 13 157 Pz 1 12
11 13.3 Pa 1 1.2

TABLE 8. EGFR Compartment A cycle place counts. The transitions
are color-coded to match the subreaction identification.
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FIGURE 10. Place occurrence bar plot.

EGFR and that internalization of the complex is a control point for a different biochemical
pathway.

The regularity for the places is consistent with the results for the transitions. The ini-
tialization (EGF and EGFR) are low as they are the start of the sequence. The formation of
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EGF:EGFR;nternaiizes 1S alS0 low as there is only one path connecting it to the network.
Obviously, a key control point is here as once EGF:EGFR;,¢ernatized 1S fOrmed, it can
only go back through the EGF:EGFR place. Thus, internalization is a way to control the
initiation of the entire pathway as well as a separate pathway. The only two places with
low occurrence (just below 10%) are P’ase(1) involved in the phosphorylation of SHC and
Ras GAP itself.

Forward Positive Pathways. There are nine positive forward-only minimal cycle, which
are highlighted in red in Table 6. They are repeated in Figure 9 to facilitate further discus-
sion. There are two forward three-cycles associated with each of the three subreactions —
SHC, GTP:Ras, and SOS. In addition, there are three six-cycles associated with each of the
three subreactions. They may be easily identified by tracing them through their respective
enlarged Figures 14, 15, and 16, which are included in the Appendix.

| Number | Cycle Specification | Subreaction Description |
10b P —r ps 2% pa —» pa SHC:EGF:EGFR
11b P11 13 Pio 23 Pr s P11 SHC:P ase(1)
5b Piz 2% pre ~S pir 2% pas GDP:Ras SHC-P-SOS.GRB2
7b Pis 2% p1s 2% pia 2% pis GDP.RasRasGAP
3b Pzs BELS Pzr i 4 Pza il B Pzs SOS.Erk-PP
2b Pzs i 3 Pzs ety Pano I3 Pzs SOS:P ase(2)
18b Paﬁﬁpsﬂpse—lipnﬂpmﬁpsjﬁpa SHC
15b Pia E Fis EJ" Far t—Z‘" Pia m FPis E’{. Pis Ei Fia GDP:Ras
14b Pzs i3 Pza BE S Par L Pza L3 Pza Bill Fan BL-} Pza SOS

TABLE 9. The labeled pathway listing of the nine positive forward-only
minimal cycles. These pathways were listed previously in Table 6 and
retain that enumeration.

It is interesting to note that six of the thirty places are not contained in the nine posi-
tive forward-only minimal cycles and they are gy [EGF], pz [EGFR], p4 [EGF:EGFR], p20
[SOS:GRB2], p21 [GRB2] and pzz [SOS*:GRB2]. These biochemical species are critical
to the functioning of this compartment in that they act as either sources or sinks to the net-
work. Note that gy, pz and p. are places with low probabilities of occurrence as they are
involved with initiation of the network and loss of the EGF:EGFR complex through inter-
nalization. They appear in pathways only in combinations of both forward and backward
pathways, and they specifically occur in two-cycles. This observation will be relevant to
the discussion on S-supports.

Analyses of the forward-only pathways shows flux (information content) transferring
from Compartment A to Compartment F. Therefore, the concentration of species within
this subreaction pool is a limiting factor for the productivity of the network as a whole.
There is not a positive forward-only cycle throughout Compartment A of the EGFR net-
work. Compartment A acts as the input to the entire EGFR network with initiation of EGF
binding to EGFR. However, Compartment A is a subnetwork of the EGFR network into
which Compartments H feeds back biochemical information, and Compartment A feeds
biochemical information into Compartments F and H. Compartment A also shares infor-
mation with Compartment B (GTP:Ras and GDP:Ras) and Compartment E (Erk-PP).
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S- and T-Invariant Duals. Incidence matrix representations define a framework for de-
termining the combinatorial invariants that characterize both the flow and conditional reg-
ulation of information in an operational system modeled by a Petri net. The net invariants
can be used to identify the existence of bi-stable switches in the molecular network.

S-invariants and S-supports. Beginning with the connectivity incidence matrix transpose
Nt a complete list of S-supports of the corresponding oriented matroid and the invariant
vector associated with each support are determined. First, the basis over the rationals {¥
is found using Gaussian elimination, resulting in a basis which is in row-reduced echelon
form. This form looks like the first few positions are rather random, but the rest of the
matrix is a square identity. The signed supports of this basis are determined by the proce-
dure described in Oliveira et al. (2001). The oriented matroid is built by closing off the
listing of signed supports under the three oriented matroid operations listed in Oliveira et
al. (2001) Definition 23. The algorithm works as follows: Take the signed supports of the
basis and apply the three operations. If a new signed support is generated, add it to the
listing. This process is performed until no new signed supports are generated. Thereafter,
a search may be performed to determine the positive-only minimal supports, etc.

The S-supports represent those vectors satisfying equation (1). They represent a listing
of the places and directions through which information must pass in conservation form.
Each S-invariant vector v, is of dimension 30 x 1. A basis for the set of S-invariants,
N (W'}, is given by Table 11.

There were over 400,000 distinct S-supports identified. The distribution of S-support
cycle lengths versus number of occurrences of that length has an emerging binomial-like
distribution which is shifted toward the longer length cycles (see Figure 11). This obser-
vation of the higher-end group is consistent with the higher-end distribution of minimal
cycles (Figure 8). Further, this same distribution can be seen within the clusters of S-
supports of a given length, when broken down by type, as in Figure 12. The types are
specified by a three-tuple: <cnumber of non-zero entries in the support vector, number
with positive value, number with negative value>. Figure 13 provides an enlarged view
of the binomial-like subdistribution within the binomial-like overall distribution, which
reinforces the argument that these networks contain a tremendous amount of symmetry
and pattern despite their inherent interacting complexities. Figure 13 depicts the detailed
information for the S-supports of length 21, which is the peak cluster shown in Figure 11.

The existence of an underlying binomial distribution is anticipated since we are enumer-
ating the subsets of the n—sets of the network’s place and transition vertices. From this
we obtain binomial posets of size 2%. It follows that a binomial generating function is the
canonical generator of the distributions of place and transition occurrences in the network.
From this observation, we immediately obtain that there are (}}) arrangements, since we
are counting the occurrences of subsets of »—sets each with given cardinality k. We also
observe that the distribution favors the existence of the larger subsets, since we have placed
an additional condition (restriction), which requires that a candidate subset must generate
a cycle in the network if it is to be included in the enumeration. This constraint elimi-
nates many of the smaller subsets, as shown in Figures 11) and 12, resulting in the shift of
the distribution to the longer length vectors. In contrast, the distribution for a given cycle
length is symmetric, as shown in Figure 13. Further, we observe that as the network model
goes from discrete to continuous, as n goes to infinity, the binomial distributions converge
in the limit to Gaussian distributions. The existence of the underlying binomial distribu-
tions implies that the discrete sample space, that the network employs to self-organize, is
generated by a Bernoulli process. In the stochastic limit for the continuum kinetic model
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TABLE 11. A basis of dimension ten for the space of S-invariants.

of the network, the discrete Bernoulli process passes to a Poisson process. Finally, we ob-
serve that this passage indicates that the network lives in a class of fundamental queueing
networks, where these networks are characterized by Markov processes.

Of the 400411 distinct S-supports, only 295 of them are positive-only. Further, of the
295 positive-only S-supports, only ten are minimal. Here, the minimal listing means the
smallest number of vectors such that each place is visited at least once. Recall in the
discussion of the nine minimal forward-only pathways that it was noted that some of the
places were not visited in the listing. Specifically, the sources and the sinks of the network
were not contained in forward only pathways. Therefore, it is no surprise that the listing
of nine minimal forward-only pathways is not identical to the ten minimal positive-only
S-supports. However, they are related. The minimal positive S-supports enumerate the
hypercycles, which are provably obtained as linear combinations of positive forward-only
minimal cycles.
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EGFR CompA S-support Length Distribution, 400411
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FIGURE 11. Discrete distribution of the number of S-support cycles of
a given length. For example, there are 67,860 S-supports of length 21.
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Support Length by Positive/Negative Type

FIGURE 12. Discrete distribution of the number of S-support cycles of
a given length, broken out into the individual types denoted <:number of
non-zero entries, number of positive values, number of negative values:>.

The ten minimal positive-only S-supports may be represented in terms of vectors or as
sets of places containing unit values only. Note that the order of the places is irrelevant.
These ten S-supports are presented in Table 12.
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EGFR CompA S-suports of Length 21
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FIGURE 13. Discrete distribution of the number of S-support cycles of

length 21.
| S-supportNo. |  S-support Specification || S-support No. | S-support Specification
lc PriPioi P11 6c PsiPe;PaPesPios P11y Pz Pis, P1r
2c Pasi Pzr; Pzs 7c P11 FPa;Fa:Pa:Pe
3c P15, Pis, P1e 8c F2;Fa;Pa, Pa:Ps
4c Fzs; Pzs, Pan 9c Fizy Pis; P17y P20y P21 Pz
5c FPia Fi4e:FP1s:F 17 P1a;, P1s 10c FPiz FPies1P171P204 P22 P23, P24, P27r P28, Pes Pan

TABLE 12. The ten minimal positive-only S-supports as represented as
a list of places whose entries are unitary.

S-support 1¢ contains the same places as pathway 11#; S-support 2¢ contains the same
places as pathway 3#; S-support 3¢ contains the same places as pathway 7&; S-support 4¢
contains the same places as pathway 2&; and S-support 5¢ contains the same places as path-
way 15&. However, in order to include all of the places while listing vectors which satisfy
equation (1) with unary values only, the remaining four S-supports must be augmented by
two-cycles. Therefore, S-support 7¢ contains the same places as pathways 106+1%a+21 g;
S-support 7 ¢ contains the same places as pathways 108+ 20e 4 21a; S-support 9¢ contains
the same places as pathways 56 + 38a + 2%9a + 31e; and finally, S-support 10¢ contains
the same places as pathways 148 4+ b& + 38a + 32a. All nine of the positive forward-
only minimal cycles presented in Table 6 and repeated in Table 9 are contained in the ten
positive-only minimal S-supports, but in order for the vectors to satisfy equation (1) they
must include information from either the sources or the sinks of the network.

It is observed that the number of positive-only minimal S-supports is the same as the
basis size for the S-invariants; however, the mathematical significance, if any, of this has
not yet been resolved. The S-supports of the network are obtained from the S-invariants
of the network; where the S-invariants define the canonical conservation law for molecular
species reactants and their products. We observe that this conservation law characterizes
the flow of the network at equilibrium. The S-supports are a minimal basis subset of the
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basis set that spans the S-invariant nullspace. Therefore, each minimal positive (forward)
basis corresponds to a minimal cycle that, in turn, canonically corresponds to a local equi-
librium flow in the network. This condition is the combinatorial analog of Nash equilibria
for a conservative non-cooperative n-person game [Oliveira et al. (to be published) and
Szép & Forgo (1985)].

T-invariants and T-supports. Beginning with the connectivity incidence matrix, a complete
list of T-supports of the oriented matroid and the invariant vector associated with each
support can be determined. The T-supports represent those vectors satisfying equation (3).
They represent a listing of the transitions and directions through which information must
pass in conservation form. Each invariant vector w,, is of dimension 46 x 1. A basis for
the space of T-invariants is given by Table 13.
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4, CONCLUSION

We have performed a Petri net analysis of the initial subnetwork in the EGFR signaling
path. The Petri net shows how information is passed through the network based only on
connectivity assuming K., = 1 with no regard for the value of the rate constants. Analysis
of the network shows that complex formation and internalization of the EGF:EGFR com-
plex are key regulators for the network, i.e., the initiation of the network is not found in
many cycles. As compared to other networks, the frequency of transition pairs is not very
high, reaching a maximum of < 15%, which indicates a balanced load sharing of the work
performed by the network. The methodology identifies the network pinch points, which,
in turn, identify the points of control in the network. Those events which occurred with
the greatest frequency in the network are phosphorylation reactions leading to activation
of SOS, an effector protein. The production of SOS leads to the signal eventually being
transmitted to the kinase cascade, so it is not surprising that it is a key element showing up
in a number of cycles and that activation of SOS is so important in the network.
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APPENDIX A. ENLARGED VIEWS OF THE EGFR COMPARTMENT A SUBREACTIONS
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FIGURE 14. SHC Subreaction Petri net of the EGFR Compartment A.
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