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ABSTRACT

We have applied an algorithmic methodology which provably decomposes any complex net-
work into a complete family of principal subcircuits to study the minimal circuits that de-
scribe the Krebs cycle. Every operational behavior that the network is capable of exhibiting
can be represented by some combination of these principal subcircuits and this computa-
tional decomposition is linearly ef� cient. We have developed a computational model that
can be applied to biochemical reaction systems which accurately renders pathways of such
reactions via directed hypergraphs (Petri nets). We have applied the model to the citric
acid cycle (Krebs cycle). The Krebs cycle, which oxidizes the acetyl group of acetyl CoA
to CO2 and reduces NAD and FAD to NADH and FADH2, is a complex interacting set of
nine subreaction networks. The Krebs cycle was selected because of its familiarity to the
biological community and because it exhibits enough complexity to be interesting in order
to introduce this novel analytic approach. This study validates the algorithmic methodology
for the identi� cation of signi� cant biochemical signaling subcircuits, based solely upon the
mathematical model and not upon prior biological knowledge. The utility of the algebraic-
combinatorial model for identifying the complete set of biochemical subcircuits as a data
set is demonstrated for this important metabolic process.

Key words: Krebs cycle, TCA cycle, molecular reaction, complex formation, enzyme reaction,
network, Petri net, hyperdigraph, directed graph, circuit, cycle, unique minimal cycle, spanning
tree, signaling subcircuit, null space, equilibrium, Gaussian, distribution.

1. INTRODUCTION

We have developed a computational approach (see Oliveira et al., 2001), which depicts se-
quences of biochemical reactions via specialized directed graphs (cf. Berge, 1973). The creation
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of such network models for biochemical systems enables the elucidation and quanti� cation of the system
response to a perturbation. Such models are the � rst steps toward a goal of facilitating transformation of
a biochemical system by a computational model. The methodology is intended to generate a complete
database or listing of all of the minimal circuits that principally decompose, or rebuild, the network. Given
the complete listing of unique minimal circuits, we can formulate hypotheses regarding the characteristics
of the � ow of information in the network in the presence or absence of unknown and/or deleted species. We
have selected the familiar Krebs cycle to demonstrate the utility, validity, and veri� cation of our underlying
approach as well as our computational algorithm.

Graphical network models provide a computational framework for identifying key circuits, and, sub-
sequently, potential oscillatory behaviors and system responses to biochemical perturbation. The model
presented here represents the set of all mass-� ux balance-conserving pathways or circuits for a given
biochemical reaction sequence. The size and complexity of the problem of identifying all such allowable
paths and combinations of paths has signi� cant computational complexity, which for large systems will
require large computational resources. We have extended previous approaches to this problem (cf. Alberty,
1996, 1994, 1992, 1991, 1991; Clark, 1988; Kauffman, 1971a, 1993; Kohn and Letzkus, 1983; Kohn and
Lemieux, 1991; Karp et al., 1998; Seressiotis and Bailey, 1988; Mavrovouniotis and Stephanopoulos, 1990;
Reddy et al., 1996; and Schilling et al., 1998, 1999, 1999) by the formulation of a combinatorial geo-
metric model known as an oriented matroid. A thorough explanation and development of the fundamental
algebraic-combinatorial mathematics has recently been published (Oliveira et al., 2001).

A directed graph is a data structure that conveys connectivity and direction. It is composed of two sets:
a vertex set and an edge set (cf. Oliveira et al., 2001). Circles most often represent vertices; arrows represent
edges. A vertex contains a data element, and an edge speci� es a rule and direction for the relationship
between any two vertices.

A Petri net (cf. Reisig, 1985) is an extension of this notion in which edges (like transitions) are allowed
many input and output vertices (like places). In modeling a biochemical pathway with a Petri net, we
represent a chemical species by a place in the net, and a chemical event by a transition. By chemical event,
we refer to any interaction that converts one molecule into another or even processes such as a complex
formation. A chemical event could be a classical chemical reaction (e.g., condensation, phosphorylation),
an enzymatic process (e.g., substrate binding, release of product), and/or various reactant and product
interactions where the chemical nature of the interacting partners is not changed, (e.g., complex formation).

The Petri net model introduced here provides us with an extensive set of combinatorial tools for deducing
the qualitative control logic of biochemical networks. This approach de� nes states in the system to be
marked places, which combinatorialists refer to as boxes; and the tokens, that are colored with markings
that symbolically represent biomolecular species such as metabolites, enzymes, and cofactors, etc., are
called colored balls. The systematic nature of this modeling approach studies the circuit arrangements or
partitions of a biochemical network as functions of marked balls (biochemical species) being arranged into
marked places, subject to a set of process control rules de� ned by the transition conditionals of the Petri
net. The tokens are symbolic representations of biomolecular species.

The topology of a Petri net is completely speci� ed by its incidence matrix, whose rows are places and
columns are transitions of the Petri net. All matrix entries are either 0, 1, or ¡1; these quantities specify
the absence or presence of a connecting edge between two places, as well as its direction.

In addition to its topology or connectivity, a Petri net at a given time has a state or marking that is
speci� ed by the number of tokens (here, molecules) in each place. When a reaction or series of reactions
takes place, the corresponding transitions are said to have � red, and the token numbers then change
commensurate with the stoichiometry of the reaction. For example, if a � ring sequence of the Petri net
that describes the fumarase reaction � res once, there will subsequently be one less molecule of fumarate,
one more molecule of L-malate, and the same number of molecules of fumarase, as shown by the reaction
scheme given in Table 1.

Should the number of fumarate molecules be zero, this particular reaction will be unable to � re until
some other reaction sequence replenishes this molecule. A useful feature of the Petri net approach that
we are taking is that we need not have a detailed, balanced chemical reaction. Rather, we can model the
transformation of fumarate to L-malate without detailed knowledge of how the process has occurred at the
molecular level. This approach clearly indicates that uncertain parameter information can be effectively
included in the network model as long as we know the connectivity.
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Table 1. Fumarate C Fumarase Ã! L-Malate C Fumarase

Discrete approaches to modeling kinetics, such as the one under consideration, are critical as cells deal
with small numbers of molecules in terms of molar quantities. There are often only thousands to millions
of a protein in a cell and this is far less than even pM quantities (10¡12 moles D 6 £ 1011 molecules).
Each chemical entity reacts in a unit fashion governed by the stoichiometry of the process. Fractions of
proteins do not react—whole ones do. Thus, modeling the protein reactions in a living cell requires an
integer-based formulation of the reaction network, and Petri nets are totally appropriate for such modeling.

Our current model is qualitative, as it is focused on the connectivity of species through chemical
processes which re� ect the � ow of information in the network. The model can be modi� ed to re� ect detailed
stoichiometry, enzyme kinetics, enzyme inhibition or activation, and regulatory feedback mechanisms. The
Petri net model of biochemical reaction networks satis� es laws of mass conservation by allowing only
those � ring sequences that obey the speci� ed transition rules. Since the model can specify exact numbers
of molecules, it is not subject to round-off errors that might occur with continuous solution approaches
for differential rate equation models, e.g., Michaelis–Menton type kinetic enzymatically de� ned models
(cf. Weiss, 1996). Such errors can become consequential when dealing with chemical species for which
the total numbers present in a living cell are small.

In order to demonstrate the capabilities of this approach, we have chosen to model a well-understood and
well-established biological network. The tricarboxylic acid (TCA) or Krebs cycle is a series of biochemical
reactions central to energy production in all eukaryotic cells (cf. Elliott and Elliott, 1997). Substrates for
the cycle include the products of glycolysis, protein, and lipid catabolism. Products of the TCA cycle are
nucleotide reducing equivalents whose entry into the electron transport chain allows complete oxidation
of molecules with concomitant production of adenosine triphosphate (ATP), the major energy molecule
of the cell. We constructed our graphical model of the TCA cycle with a focus on its biological and key
organic components. We do not include in the model small molecular species such as inorganic phosphate,
carbon dioxide, and water, as they are not likely to have limiting concentrations in a living cell. Therefore,
reactions involving these components, in some instances, will not be represented although there is nothing
in the current approach that precludes us from including them in the model.

2. PETRI NETS

The phenomenological model of a kinetic reaction network can be de� ned in all generality by a Petri
net. The mathematics underlying our approach have previously been described in detail (cf. Oliveira et al.,
2001). For a complex network, it is not feasible to completely search a Petri net for its principal circuits.
Obtaining operational insight into the network forces us to construct a generalization of the Petri net that
de� nes a hyperdigraph.

Petri nets are hyperdigraphs (cf. Oliveira et al., 2001). The vertices represent the components of the
network and are referred to as places. The edges represent a set of rules, or conditions, that must be true
before transitioning between places; the edges are referred to as transitions. When a transition is executed,
it has been � red. A set of transitions being � red is called a � ring sequence. As with all hypergraphs, Petri
net edges may connect a set of vertices with cardinality greater than two (cf. Berge, 1973).

Associated with a Petri net is a marking space. Markings can be thought of as a vector of token
counts representing information. A place producing the information is referred to as a source; and a place
consuming the information is a sink. Flux conservation is achieved when the rate at which tokens are being
produced equals the rate at which tokens are being consumed. When the � ux, for a given � ring sequence,
starts and ends at the same point, it is called a circuit. These circuits are of interest because they represent
the paths by which the network is passing as well as conserving information (cf. Oliveira et al., 2001).

Circuits are found by generating an incidence matrix. The rows are labeled by the places, and the
columns are labeled by the transitions. Each entry in the incidence matrix will be a 0, 1, or ¡1, as noted
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above. If information is � owing from a place to a transition, that entry is ¡1, representing a loss. If the � ow
is from a transition to a place, the entry is C1, representing a gain. The entry is zero otherwise. Once the
incidence matrix N is generated, the left nullspace can be found by � nding solutions of N t v D 0, where
n corresponds to the number of reacting species within the biochemical system (places), m corresponds to
the number of reactions that are taking place (transitions), and v is the n-dimensional solution vector.

Stencils used in biochemistry

Complex biochemical processes can be considered to be composed of two fundamental types of bio-
chemical building blocks: molecular reaction and complex formation. These fundamental building blocks,
summarized in Table 2, can be considered as Petri net stencils. Each of these building blocks has associated
with it a Petri net representation, which pictorially depicts the communication pathways, and its incidence
matrix, which mathematically speci� es which places are receiving and/or transmitting information to each
other subject to the transition rules. Forward paths are denoted by solid lines with directional arrows, and
backward paths are denoted by dashed lines with directional arrows. In the incidence matrix, a place p

would have a C1 entered for transition t if information is propagating subject to the transition node into
the place node; similarly, a place would have an entry ¡1 for the transition if the information is propagating
from the place node subject to the transition node.

Description of an enzymatic reaction

In our approach, an enzyme-catalyzed reaction, as described in Table 3, is modeled as a series of
separate steps (not necessarily the actual physical process): (1) interaction of substrates, (2) association
of the interacting substrates with the enzyme, (3) transformation of substrates to products by the enzyme,
(4) dissociation of products from the enzyme, and (5) separation of the products from one another. Our
model’s representation of these processes as separate, sequential steps is a mathematical construct, which
does not compromise the actual physical results. Our focus is on accounting for each molecular species
and its corresponding set of possible reactions. The biochemical reaction is viewed as an edge or subset
of edges in a graph, depicting � ow of information rather than detailed reaction mechanisms.

In order to identify the circuit decomposition of a general network, it is necessary that the network be
represented as a graph. Accordingly, the hyperdigraph representation of the Petri net must be transformed
in order to satisfy the more general condition of being a graph. There are several ways to obtain a faithful
graph representation of the hyperdigraph. One can either transform the hyperdigraph into a directed bipartite
graph (cf. Narayanan, 1997) or, as we have chosen, transform the hyperdigraph into an undirected graph

Table 2. Fundamental Petri Net Stencilsa

aThe transition nodes are physically identi� ed for reversible reactions. The presence of the t1 and t2 transitions guarantees
microscopic reversibility.
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FIG. 1. The enzyme reaction digraph.

FIG. 2. The complete labeled pathway listing of the transformed enzyme reaction. Note that there are 5 two-cycles
and 2 three-cycles.

while maintaining a record of the added edges and compressed multi-edges and all of the directional
information (cf. Berge, 1973).

We observe that the reason for this need to transform the hyperdigraph is because there may be multiple
inputs and/or outputs associated with the transitions and our current mathematical machinery requires a
true graph. The molecular reaction presented in Table 2, which is a simple reversible reaction path, is
referred to as a simple circuit in the network model and a two-cycle in the graph representation. The
complex formation is a nonsimple example. As can be seen in the Petri net representation of complex
formation, transition t1 contains the rule combining the � ow of information from places p1 and p2 to
p3 ; similarly, transition t2 contains the rule splitting the � ow of information from place p3 into places
p1 and p2 . Our representation assumes that all transitions are simply unary, where the regulation cannot
be speci� ed. We remedy this problem by associating a graph with a Petri net that has exactly the same
cycles as the net has circuits.

Consider one such example involving nonsimple reactions, the enzyme reaction presented in Table 3(a).
The incidence matrix of the Petri net representation yields an associated family of edge-sets with only six
minimal elements corresponding to the three two-cycles: ft1; t2g, ft3; t4g, and ft5; t6g. Actually, the � rst and
last of these each give rise to two distinct cycles. We are also missing two three-cycles. It is clear that this
approach does not capture all of the information.

The readily constructed graph for the enzyme reaction is presented in Fig. 1, with its incidence matrix
as presented in Table 3(b).1 We have introduced a slight change in notation from that of the places p

to the vertices v and from transitions t to edges e such that p4 ! t3 ! p5 is denoted by e10. In
this way, we may distinguish between multiple paths passing through a single transition. For example, the

communication of information through transition t1 is now split such that p4
t1¡¡¡! p3 becomes e2 and

p4
t1¡¡¡! p1 becomes e7.

The complete list of correspondences between transitions and digraph edges is provided in Table 3(b).
The basis size was determined to be six. The seven unique minimal cycles or paths we found are presented
in Fig. 2.

1This previously published example is repeated here in order to correct a minor error.
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Computational identi� cation of the minimal cycles

To reduce the size of the nullspace to a � nite number, we have devised a search algorithm, which
we call “successive simpli� cation.” The algorithms are based on the fundamental mathematics previously
described by us. We � rst transform the hyperdigraph to obtain a directed graph, which has cycles in
one-to-one correspondence with the circuits of the directed bipartite graph representation of the Petri net.
Then, we use the fact that the cycles of an undirected graph form a Z2-vector space, which is the nullspace
of the incidence matrix considered as a Z2-matrix. Hence, we remove the directions on the digraph,
condense repeated edges into a single edge, and � nd all cycles of the undirected graph. The vector space
of cycles has dimension m ¡ n C 1 where m is the number of edges of the transformed matrix, and n the
number of vertices. Hence the space has size 2m¡nC1. A basis for this vector space may be found from
a spanning tree for the graph. A list of all cycles in the digraph may then be generated with a simple
backtracking search algorithm. A simple bookkeeping procedure is used to keep track of the labels, i.e.,
the assignments of speci� c numerical entries to the appropriate place and transition. In all generality, this
can be a tedious process, but, a linear computational complexity order is still provably guaranteed. Our
reversibility assumption simpli� es this process considerably—every undirected cycle gives rise to exactly
two positive cycles—one in each direction. Of course, our list will contain nonminimal cycles—because,
for example, � gure eights may arise—and so we avoid listing nonminimal cycles, not by checking for
minimality, but by directly listing a minimal subcycle of every cycle we � nd. This generates repetitions,
which are easily removed at a later time, retaining a linear complexity order in both time and space.
The � nal list of minimal unique cycles is the smallest set of cycles required to compose any physically
meaningful cycle that the network system is capable of performing. This listing is guaranteed to be complete
due to the exhaustive nature of the search.

3. THE KREBS CYCLE

The Krebs cycle is the second stage in glucose oxidation. The Krebs cycle takes the products of glycol-
ysis, which are pyruvates, and converts two of the carbons in pyruvate to CO2 and also transfers electrons
to electron carriers. As part of this process, three molecules of nicotinamide adenine dinucleotide (oxidized
form) [NAD] (where NAD is NADC) are reduced to nicotinamide adenine dinucleotide H (reduced form)
[NADH] and one molecule of � avin adenine dinucleotide (oxidized form) [FAD] is converted to � avin
adenine dinucleotide H2 (reduced form) [FADH2].

Fifty-nine places and 86 transitions are required to specify the Krebs cycle, in a simpli� ed form where
we have not tracked the number of water molecules nor the CO2 released. From an operational control
systems theory point of view, the transitions t act as the control laws for the system whereas the places
p act as the place variables in the Petri net representations of the biochemical reactions. The Petri net
representation is a combinatorial abstraction of the molecular interactions de� ned over a chemical reaction
space where the transitions de� ne the operational conditions or rules that must be satis� ed for a reaction
to occur. In this graphical representation, a chemical species moves from one place to another subject to
a transition rule based on chemical equilibria (thermodynamics) or kinetics. The chemical species do not
pass formally through the transition but rather are subject to the rules described by the transition.

Our primary concern is with the connectivity of the network made up from these biochemical stencils.
Two place nodes are connected subject to a transition node simply if it is possible for the second place to
be reached from the � rst place through some physical/chemical mechanism which is reversible. Of course,
the actual amount of chemical system reversibility may be very small and is dependent on the equilibrium
constant and/or kinetic rate constants. Because all of the reactions under consideration are potentially re-
versible, these paired sets of transitions are identi� ed explicitly. The implications of the complexity that can
be incorporated in the transition rules is deferred to a subsequent paper, and, in this discussion, only the
existence of the species moving through the places of the pathways is indicated. In other words, we do not
assign weights or probabilities to the paths of the reactions; we only indicate the existence of the reaction
paths and their directions, i.e., how information � ows in the network. We are not considering the quantities
of molecular species present, the equilibrium constants, their reaction rates, or the timed sequence of events.

Forward paths are designated by directed solid lines, and backward paths are designated by directed
dashed lines. Forward and backward paths are given equal weight in terms of describing the possible paths
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along which information can � ow. We consider that two places, or even subreactions, are connected regard-
less of whether that communication of information is via a forward or a backward path or combinations
thereof, indicating only whether a physical connection is possible. Our assumption of reversibility of the
system requires adding extra edges to ensure that every connection between two places is both forward
and backward; i.e., a pair of edges always exist.

Speci� cation of the places

The Krebs cycle is described by 59 places, one for each species in the cycle. The list of places is
presented in Table 4. The places have been color coded according to the subreactions comprising the graph
cycle. The places printed in bold are those later identi� ed by the mathematical model to be critical. The
places represent the various key chemical species, other than HC, H2O , and CO2, produced or consumed
in the Krebs cycle.

The Krebs cycle and its subreactions

The Krebs cycle was modeled after the information given by Darnell et al. (1990) and Stryer (1988). Our
Petri net representation of the Krebs cycle is presented in Fig. 3. (See www.biomolecular.org/publications/
Krebs/index.html). The nucleotide cofactor places are indicated in red, the enzymes in green, and all other
species are indicated in blue. The details of the � gure are obscured by the requisite scaling down of
the � gure to accommodate the published page, so we have included larger renditions of the subreactions
as presented in Figs. 3 through 10. However, despite the reduced size of Fig. 3, the cross-couplings—
involving places P57 or NADH, P58 or NAD, and P59 or coenzyme A [CoA]—are particularly noteworthy.
These nucleotide cofactors are involved in interactions between the subreactions which provide alternative
pathways through the Krebs cycle. The physical limitations associated with including this � gure in a
readable format actually emphasizes the issue of complexity in biological networks. The Krebs cycle is
a relatively simple set of biochemical reactions; however, even its complexity is such that a complete
description becomes quite large. Our approach is that once a level of con� dence in this procedure is
established, the mathematics will be relegated to the computational domain, which will produce data sets
which can then be analyzed with the con� dence that the true complexity has been properly modeled.

Having established the Petri net, the incidence matrix is then constructed. In fact, the incidence matrix
may be constructed directly from the biochemistry without the need for physically drawing the network.
The incidence matrix is presented in Table 5. (See www.biomolecular.org/publications/Krebs/index.html.)
Blocks of color, which match the color coding of the Krebs cycle Petri net subreactions, are visible. Note
the tremendous amount of natural structure in this nearly block-banded matrix. The cross-couplings of
places P57 [NADH], P58 [NAD], and P59 [CoA] present the exceptions to the otherwise block-banded
structure. However, it is just these cross-couplings, together with the coupling overlaps, that provide the
network’s richness, adaptability, and combinatorial � exibility. Again, to � t the entire table onto a single
page in order to stress the inherent structure of the matrix makes it dif� cult to read. Magni� ed submatrices
associated with some of the subreactions will follow the magni� ed subreactions.

Before we begin a discussion of the individual subreactions of the Krebs cycle, there are interesting
features to be noted regarding the nucleotide cofactors: P57 [NADH], P58 [NAD], and P59 [CoA]. All of
the forward paths go into P57 (from Subreactions 4, 5, and 9) and all of its backward paths leave from
P57 (to other species within Subreactions 4, 5, and 9). Conversely, all of the forward paths lead from P58
(from Subreactions 4, 5, and 9) and all of its backward paths lead into P58 (again, interaction with other
species within Subreactions 4, 5, and 9). P59 is different. CoA has forward paths leading into it from
Subreactions 1 and 6, and its third forward path leads from CoA into Subreaction 5. CoA has backward
paths to Subreactions 1 and 6 and from Subreaction 5. The direction of cross-coupling � ow has signi� cant
rami� cations to the importance of speci� c species in the analysis of the Krebs cycle system.

As discussed earlier, our interest is in the connectivity of the species, without prejudice to forward path,
backward path, timing, etc. If a physical mechanism exists that allows information from place 1 to � ow to
place 2, it is included and given equal weight. The set of minimal cycles is determined and then examined
to investigate which places and which transitions appear most and least often in the minimal cycle set.
These noteworthy places and transitions may then be examined in terms of their biochemical importance.
We emphasize that our listing of cycles is guaranteed to be the complete set of minimal cycles.

http://www.biomolecular.org/publications/Krebs/index.html
http://www.biomolecular.org/publications/Krebs/index.html
http://www.biomolecular.org/publications/Krebs/index.html
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Table 4. Krebs Cycle Petri Net Place De� nitions

aCommonly used abbreviations are indicated in brackets.
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Petri nets of the Krebs cycle subreactions. Subreaction 1, depicted in Fig. 3, is connected to Subreaction
9 via a forward path and from Subreaction 9 via a backward path. The citrate in Subreaction 1 is connected
to, or may even be considered a part of, the combined Subreactions 2/3 via a forward path and from
Subreactions 2/3 via a backward path. Finally, citrate:CoA is connected to CoA, which is connected to
Subreaction 5 in a forward path (and from a backward path) and to Subreaction 6 in a backward path
(and from a forward path). Note that CoA is included as a complex formation, similar to acetyl CoA. It is
not drawn the same way because CoA is shared and appears in the network in several other subreactions.
Note that Subreactions 2 and 3 were combined because the aconitase enzyme catalyzes two consecutive
Krebs cycle reactions. Subreactions 2/3, depicted in Fig. 5, as previously stated, are connected to the
citrate of Subreaction 1 via a backward path and from the same citrate via a forward path. The isocitrate of
Subreactions 2/3 is also a species of Subreaction 4. Subreaction 4, depicted in Fig. 6, shares isocitrate with
Subreactions 2/3. It also shares ®-Ketoglutarate with Subreaction 5. Tremendous complexity and system
versatility is provided in Subreaction 4 from its communication via cofactors NAD and NADH. Subreaction
5, depicted in Fig. 10, appears later in the text due to its orientation when extracted from Fig. 3. Note that
Subreaction 5 shares ®-ketoglutarate with Subreaction 4 and it shares succinyl CoA with Subreaction 6.
Further, it couples to both Subreaction 1 and the combined Subreactions 2/3 and to Subreaction 6 through
P59 [CoA]. It also couples to Subreactions 4 and 9 through both NAD and NADH. Subreaction 6, depicted
in Fig. 7, involves nucleotide cofactors guanosine diphosphate [GDP] and guanosine triphosphate [GTP].
It shares succinyl CoA with Subreaction 5 and succinate with Subreaction 7. Its communications through
cofactor CoA have already been discussed. Subreaction 7, depicted in Fig. 8, involves nucleotide cofactors
FAD and FADH. It shares succinate with Subreaction 6 and fumarate with Subreaction 8. Subreaction 8,
depicted in Fig. 9, shares fumarate with Subreaction 7 and L-malate with Subreaction 9. Lastly, Subreaction
9, also depicted in Fig. 10, completes the cycles with its sharing of oxaloacetate with Subreaction 1. Its
cross-couplings have already been discussed. Clearly, this system is able to represent an extensive collection
of circuits via forward and backward paths. Some admissible paths, however physically improbable, could
easily be missed using alternative methods of analysis of the Krebs cycle, and yet they may prove to be
quite interesting biochemically and/or pharmaceutically.

Incidence matrices of the Krebs cycle subreactions. In Table 6, we expand the incidence matrix entries
for Subreactions 1, the combined 2/3 and 4 from Table 5. Note the nearly block-banded matrix structure,
the overlapping of the blocks associated with adjacent subreactions, and the cross-couplings accomplished
by the P57, P58 and P59 cofactors.

Identi� cation of relevant biochemical circuits

The directed connections between the transitions and the places, as speci� ed by the Krebs cycle presented
in Fig. 3, are the input for our computer code. The code � rst identi� es 73 two-cycles because the algorithm
suppresses multiple edges and would not identify them otherwise. These same two-cycles can be recognized
as all of the molecular reactions in the Krebs cycle diagram, noting that each complex formation contains
two two-cycles and each enzymatic reaction contains � ve two-cycles. The two-cycles may be counted by
traversing the Krebs cycle backbone starting and ending at P56, which identi� es 43 two-cycles, and then
adding an additional two-cycle for each of the 14 complex formations, and two additional two-cycles for
each of the 8 enzyme reactions, for the total of 73.

The code next determines that the basis size is 15. The implication is that there are then (215 ¡1) possible
minimal cycles through the undirected graph or (215C1¡2) possible minimal cycles through the transformed
directed fundamental network graph. It is noted that there is an empty cycle (i.e., with no edges) in the
undirected graph and two empty cycles in the directed graph, which the algorithm will not count, and so
the code counter is set accordingly. In theory, all of the closed circuits achievable in this network can be
composed from the minimal set of circuits. In actuality, the size of the directed characterizing data set is
considerably smaller than the 216 limiting theoretical value. Subsequently, a script is run to identify the
set of unique minimal cycles by removing the duplicates.

There are 73 two-cycles and 15,820 other cycles and the 1 zero-cycle, for a total of 15,894 unique
minimal cycles. This complete listing of cycles is then placed into a database for further analysis. The
total number of unique minimal cycles is considerably less than the limiting value of 216 and is actually a
factor of four less than the theoretical number due to the removal of nonminimal cycles. All 15,893 unique
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FIG. 3. Petri net of the nine-reaction Krebs cycle. Each of the subreactions are repeated in Figs. 3 through 10 for readability; however, the entire composite
hyperdigraph is included in order to show how the cofactor places P57 (NADH), P58 (NAD), and P59 (CoA) provide a transnetwork coupling offering
signi� cant network redundancy and complexity.
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FIG. 4. Subreaction 1: An acetyl residue from acetyl CoA condenses with oxalacetate to form citrate with a catalyzed reaction by
the citrate synthase enzyme.

FIG. 5. Subreactions 2/3: Catalyzed reaction by the aconitase enzyme.
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FIG. 6. Subreaction 4: Catalyzed reaction by the isocitrate dehydrogenase enzyme. Note that Subreaction 4 couples to
Subreactions 5 and 9 through both P57 [NADH] and P58 [NAD].

FIG. 7. Subreaction 6: Catalyzed reaction by the succinyl CoA synthetase enzyme.
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FIG. 8. Subreaction 7: Catalyzed reaction by the succinate dehydrogenase enzyme.

FIG. 9. Subreaction 8: Catalyzed reaction by the fumarase enzyme.

minimal circuits, corresponding to the 15,893 nonzero cycles, with their label information are required
in combination to completely characterize the Krebs cycle network. It is a tremendously rich network,
which has evolved with multitudes of alternative routes. There is a profound diversity provided by taking
combinations of 15,893 circuits.

This collection of unique minimal pathways is the complete listing of closed walks that traverse the
network from beginning to end. The unique minimal pathways are the shortest, nonrepeating, nonlooping,
nonrevisited paths. Once this data set of circuits that decompose this network as a set of minimal cycles
of the graph has been identi� ed, any number of search strategies may be speci� ed as linear objective
functions over this database of minimal cycles. Once edge weights/markings are added to the hyperdigraph
representation, the network can be analyzed to identify the set of paths which are of particular biochemical
interest via optimization methods using path algebras or linear programming/oriented matroid programming.

As a � rst approach to analyzing this data set, we look for biochemically meaningful information, such
as identifying the transitions or places appearing most often or least often in the set of unique minimal
cycles. Other questions that can be answered by postprocessing of this data set involve the identi� cation
of alternate pathways through the Krebs cycle. For example, if a place or transition in the Krebs cycle
is disabled, what alternate pathways remain from place 1 to place 2? The alternative pathways can be
identi� ed by inspecting the complete listing of circuits, eliminating those circuits containing the disabled
place or transition. Frequency distributions are presented indicating the number of occurrences of each
transition or place in the list of unique minimal cycles. Extreme values in the network analysis are of
interest, be they valleys (i.e., infrequent occurences) or peaks (i.e., frequent occurrence).

Information on transitions. There are 86 transitions required to specify the Krebs cycle. The transitions,
the count of their occurrences in the 15,893 unique minimal cycles, and the percentage of their occurrences
in the 15,893 unique minimal cycles are presented in Table 7. They are listed in order of decreasing
occurrence. Bar plots for transitions 1 through 86 versus percentage of occurrence in the 15,893 unique
minimal cycles are presented in Fig. 11. The graph is arranged in order of transition number. Because we
are assuming that all reactions are reversible with k D 1, each pair of transitions occurs with the same
frequency, as shown in Table 7 and Fig. 11. We have listed the transition occurrences in pairs; however,
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FIG. 10. Subreaction 5 (on the left) and Subreaction 9 (on the right).

in subsequent analyses for which the near equilibrium assumption will not be made, the values can and
will be different.

The transition bar plot enables us to compare the low percentage of occurrence transitions with the high
percentage of occurrence transitions. A low percentage of transitions means that information does not pass
as readily in these parts of the cycle and a high percentage means that these transitions are readily passing
information. Recall that here we assume that the equilibrium constants and the rate constants are unity.

The � rst set of low transition values (t5–t8) corresponds to passing through the citrate synthetase, P5. The
next set (t15–t18) corresponds to aconitase (P11) reactions. The next set of low values occur in Subreaction
4 (t25, t26, t29, and t30), corresponding to isocitrate dehydrogenase (P16) complex formation. These low
values are split by large transitions coupling to NAD/NADH2. Low values are also found at t39 and t40,
involving ®-ketoglutarate dehydrogenase (P23) as well as with succinyl CoA (P27) synthetase. There are
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a large number of low percentage transitions (t47, t48, t51–t58) in the CoA synthetase pathway, including
the GDP ! GTP reaction. Another group of low percentage transitions (t63–t68) is found for succinate
dehydrogenase (P41) and the formation of FADH2 (P45) from FAD (P43). The � nal low percentage
transitions, (t73 and t74) and (t81 and t82), are found for fumarase (P49) and for malate dehydrogenase
(P53), respectively. The low percentage transitions (< 30%) are, in general, found in the centers of the
various subreactions and involve enzyme-substrate complex formation.

There are many fewer high percentage transitions (> 60%) than low percentage transitions. The high
percentage transitions involve the transitions in and out (t59–t62) from succinate (P38), in and out (t69–t72)
from fumarate (P46), and in and out (t75–t78) of L-malate (P50). Note in Tables 5 and 6 that these are
where the overlaps occur in the block-banded incidence matrix.

Whereas the lowest numbers of transitions correspond to enzyme complex formation, the highest numbers
correspond to the release and use of the 4 carbon systems—succinate, fumarate, and malate. These involve
substitutions of OH for H on succinate, as shown in Fig. 12. The reaction involving the next step, formation
of a carbonyl from the alcohol to form oxaloacetate, is shown in Fig. 13.

Information on places. There are 59 places required to specify the Krebs cycle. The places, the count
of their occurences in the 15,893 minimal cycles, and the percentage of their occurrences in the 15,893
unique minimal cycles are presented in Table 8. The table is presented in descending order of occurrence. A
bar plot for places 1 through 59 versus percentage of occurrence in the 15,893 minimal cycles is presented
in Fig. 14. The graphs are presented in order of place number. Note that both the most frequently appearing
places are of interest, as well as those that appear least frequently.

There are a number of places that have a high percentage of occurrences. The highest percentage is
that associated with P51, which is the L-malate:malate dehydrogenase complex, followed by P29 and P7,
which are the succinate:succinyl CoA synthetase complex and the citrate:CoA complex, respectively. The
next highest percentages involve succinate and more of its complexes and fumarate and its complexes.
These are consistent with the fact that the most transitions involve these species. An interesting place
which shows up at a high percentage is the isocitrate:isocitrate dehydrogenase, P14.

An interesting species is the product CoA, P59. This product species occurs in 69% of the cycles. In
addition, the nucleotide cofactor pair, NAD/NADH (P58/P57), which is involved in a number of enzyme
complexes, occurs in almost 75% of the cycles, in contrast to the GDP/GTP (P34/P37) and FAD/FADH2

(P42/P45) pairs, which occur in only one. This is not surprising as NAD is reduced to NADH three separate
times in the Krebs cycle. Thus, species that are produced multiple times have a much higher probability
of being in a cycle. It is interesting to speculate that the cycle could originally just have been producing
NADH, but over time, the cell found that it could produce additional energetic species, FADH2 and GTP,
by small modi� cations of the cycle. The fact that GDP/GTP and FAD/FADH2 appear so infrequently, as
compared to the appearance of NAD/NADH in most cycles, is consistent with this conjecture.

However, the cross-coupling nucleotide cofactors—places P57 or nicotinamide adenine dinucleotide H
(reduced form) [NADH], P58 or nicotinamide adenine dinucleotide (oxidized form) [NAD], and P59 or
coenzyme A [CoA]—occur quite frequently at between 70% and 74%.

Interesting minimal two-cycles. There is a large separation between the places that occur least fre-
quently, in fact only once in the listing of unique minimal cycles, and the remaining places. These � ve
species—P1 (acetyl CoA), P34 (guanosine diphosphate [GDP]), P37 guanosine triphosphate [GTP], P42
(� avin adenine dinucleotide (oxidized form) [FAD]) and P45 (� avin adenine dinucleotide H2 (reduced
form) [FADH2])—act as controllers in the Krebs cycle. They are sources (P1, P34, and P42) and sinks
(P37 and P45).

Not surprisingly, the entry point, the acetyl-cofactor, coenzyme A, (P1) occurs only once and is the
carrier of a high energy form of the pyruvate from glycolysis. This compound is converted by the cycle
to CoA. The other species produced that occur only once are the two pairs of molecules involved in the
reduction process, the GDP/GTP (P34/P37) couple and the FAD/FADH2 (P42/P45) couple. This is not
surprising, as the role of the cycle is to provide the energy to reduce FAD to FADH2 only once and GTP
is produced from GDP only once. Recall that complex formation is composed of 2 two-cycles involving
both forward and backward pathways. Since the choice of starting-point and end-point is arbitrary, only
5 two-cycles are unique. The � ve two-cycles involving these � ve species are presented in Fig. 15. Note
that solid arrows indicate forward paths and dashed arrows indicate backward paths.
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Table 7. Krebs Cycle Transition Countsa

aThe paired transitions essentially split into two distinct categories: those between 48% and 67% and those
between 16% and 33%.

FIG. 12. The substitutions of OH for H on succinate.

FIG. 13. The formation of a carbonyl from the alcohol to form oxaloacetate.
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Table 8. Krebs Cycle Place Countsa

aThe places essentially split into three categories: those between 65% and 92%, those between
33% and 54%, and the places which only appear in one cycle. The latter grouping contains the
enzymes—P5, P11, P16, P23, P30, P41, P49, and P53.

The positive forward-only minimal cycles. Of particular interest are the positive (forward-paths-only)
cycles, which are listed in Table 9. Of all of the 15,893 unique minimal cycles, there are but 11 forward-
only positive cycles. They include the forward paths through the eight subreactions. The longest of these
11 positive cycles, with 43 places, is identi� ed as the “backbone” of the Krebs cycle. These nine positive
forward-only unique minimal cycles are somewhat obvious; however, it is important to note that the code
was able to make their identi� cation automatically. What is less obvious is that the code identi� ed two
additional forward-only cycles, which are variants of the forward paths associated with Subreaction 5 and
the “backbone.” These variations are the result of the cross-coupling bypass provided by the nucleotide
cofactor CoA.

Note that the � ve species identi� ed in the discussion on “interesting” minimal two-cycles are not to be
found in any of these 11 unique positive minimal cycles. Recall that these species—P1, P34, P37, P42,
and P45—appear only once as two-cycles in the complete listing. While these species are critical to the
functioning of the Krebs cycle, as sources (P1, P34, and P42, i.e., acetyl CoA, GDP and FAD) and sinks
(P37 and P45, i.e., GTP and FADH2), the Krebs cycle does not pass “through” them. They are species in
complex formations. Some have forward paths into the species followed by a backward path out, or vice
versa, but no forward path leads into them followed by a forward path out.
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FIG. 11. Transition occurrence bar plot. Note the bipolar distribution.

FIG. 14. Place occurrence bar plot.
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FIG. 15. The labeled pathway listing of the places which only appear in one unique minimal cycle each, speci� cally
in two-cycles, listed � rst in terms of place numbers and repeated in terms of species.

Length distribution of minimal cycles. The number of cycles of a given length is represented by a
Gaussian distribution with many cycles of considerable length, as shown in Fig. 16. This distribution is
somewhat counterintuitive in that the distribution is skewed towards the longer length cycles rather than
the shorter length cycles. The multitude of pathway options available to the functioning of the Krebs cycle
is quite rich and provides ample alternatives to any pathway should such a path be inhibited.

4. CONCLUSIONS

The present study was undertaken to demonstrate that our hyperdigraph approach can be used effectively
to provide insight into the behavior of a biochemical system. We demonstrate that this utility identi� es
biochemical pathways and circuits of principal signi� cance. The TCA, or Krebs cycle, was selected because
its reaction pathways are well known and have been extensively analyzed. The intention was to demonstrate
that our mathematical procedures and software will identify that which is known as well as that which
may not be known, completely and consistently. A database containing all of the 15,893 unique minimal
cycles of the graph representation (which correspond to the unique minimal circuits of the network) was
generated. Every pathway that passes through the Krebs cycle can be composed from circuits in the listing.
This database can be used to answer hypotheses such as the implication of removing species from the
network. Based on our solid mathematical foundation and with this demonstration of the validity of our
approach, the algorithms can be used to analyze other important biochemical systems of current interest
to the community.

We have analyzed this mathematical model to identify interesting mathematical features, which are
related to interesting biochemical features. We have established a computational technique that can be
used to reveal many features of biochemical networks. The Krebs cycle, because it is well known and
extensively studied, demonstrates the ability of our methodology to identify patterns that re� ect important
biochemical events. As expected, the circuit constituting the canonical TCA cycle appears as one of
the 15,893 minimal cycles/circuits identi� ed by our technique and it is further identi� ed as one of the
11 positive forward-only unique minimal cycles/circuits.

An unexpected result of this analysis is the Gaussian distribution of the 15,893 unique minimal cycles
when plotted as a function of cycle length. One might have thought that there would be more characteristic
cycles of shorter length than longer length and/or one might have expected that the number of cycles of
a given length would drop off exponentially with increasing cycle length, but such was not the case. The
richness of the Krebs cycle is certainly demonstrated in this observation. This critically important and
robust cycle has embedded in it all of the requisite alternative pathways to ensure its proper function. It is
a quite complex network, despite its simplicity.
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FIG. 16. Discrete distribution of the number of cycles of a given cycle length.

It is possible that the general topology of this Petri net and patterns of minimal circuits may also be
found in other networks. This approach has the potential of providing us information about the evolutionary
conservation of processes dealing with information � ow in a cell. For example, the differences in the
frequencies of appearance of GDP/GTP and FAD/FADH2 as compared to NAD/NADH provide us with
unique insights into how the cycle may have modi� ed itself to optimize its output. The size of the calculation
scales with the difference between the number of places and the number of transitions of the transformed
graph. The number of computations that need to be performed is exponential in this difference. The number
of transitions is always larger than the number of places (except in the case that the transformed graph is
a tree).

This example suggests that the application of network models to less-well-characterized reaction se-
quences will assist in experimental efforts to elucidate their � ne details and to suggest which experiments
could provide the most information. The qualitative information that we obtain, concerning product species
and cascade inductions, may be realized as hidden or suppressed subnetworks of biological signi� cance.
An example is the comparison of signaling mechanisms that are clearly homologous, such as those of
TFG-® and epidermal growth factor. Network models can provide a framework to determine which mech-
anisms have a common evolutionary path in terms of how information is processed and may increase our
knowledge of evolutionary divergence and speciation.

Finally, when we input equilibrium constants into the model, these will serve as weights in the Petri
net and could change the signi� cance of the key transitions. The weights might suggest which pathways
amongst the many unique minimal cycles are more or less dominant and/or critical. Inclusion of rate
constants will provide timing information, which could signi� cantly change the distribution of transitions
and how information � ows due to timing delays. In fact, use of more detailed information about the rate
constants and equilibrium constants will actually simplify the network analysis as it may cause some
pathways to go to zero making the system less complex.
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