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This paper is motivated by a result of Metropolis and Rota on an algebraic
characterization of the lattice of faces of the n-cube (cubic lattice). Although their
proof relies on an inductive argument, the axioms are independent of the dimen-
sion n. The question of how to extend this theory to include infinite cubic lattices
was left open. We develop an extended characterization theory of cubic lattices of
arbitrary dimension by adding three axioms (compieteness, atomicity, and
coatomicity) to those of Metropolis and Rota. The proof of our main theorem
depends on the introduction of the cubic implication algebra, which is shown to
satisfy Abbott’s axioms for implication algebras. These algebras were first devel-
oped to characterize semi-Boolean algebras and Boolean algebras. © 1995 Aca-

demic Press, Inc.

1. INTRODUCTION

The algebraic characterization of Boolean Iattices (both finite and
infinite) have been extensively investigated (see, for example, [3-5]). A
finite Boolean lattice has a geometric interpretation as the face lattice of
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an n-simplex in an n-dimensional Euclidean space. In high dimensions
(n = 5) there are only three regular solids: the simplex, the cube, and the
hyperoctahedron. Moreover, the face lattice of the n-cube and the face
lattice of the n-hyperoctahedron are dual to each other and thus isomor-
phic; hence they yield only one new order structure which plays a comple-
mentary role to a Boolean lattice.

Metropolis and Rota [6] anticipated the existence of an analogous
theory for the algebraic characterization of the face lattice of an n-cube.
Indeed, they obtained a fundamental algebraic characterization of finite
dimensional cubic lattices. Their theorem states as follows.

THeoreM 1.1 (Metropolis—Rota). Let L be a finite lattice with mini-
mum 0 and maximum 1. For every x + 0, let A, be a function defined on
the segment [0, x] and taking values in [0, x]. Assume

() Ifa <b <xthen A (a) <A (b)
(i) A2 = id (the identity map);

(iii) Let a <x and b <x. Then the following two conditions are
equivalent

A(ayvb<x and anb=0.

Then L is isomorphic to the lattice of faces of an n-cube, for some n.

Conuversely, if L is the lattice of faces of an n-cube, and A (y) is antipodal
face of y within the face x, then L satisfies conditions (i) through (iii).

The appealing nature of the above theorem lies in the fact that the
axioms (i)~(iii) are independent of the dimension n of the n-cube, al-
though proof of the above theorem in [6] is based on an induction on the
dimension n. Naturally, Metropolis and Rota posed the question of
characterizing infinite cubic lattices. The principal difficulty associated
with this problem is finding a non-inductive proof technique.

First we observe that in addition to the Metropolis—Rota axioms three
more axioms (completeness, atomicity, and coatomicity) are needed to
characterize infinite cubic lattices. We show that for any lattice L (of
arbitrary cardinality) satisfying these six axioms, there exists a set S such
that L is isomorphic to the lattice L(S) of signed sets of .

The approach chosen here makes use of the implication algebra struc-
ture on the poset L*= L\ {0}, namely, the cubic implication algebra.
Such algebras were originally used to characterize semi-Boolean algebras
as well as Boolean algebras.
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2. THE MaAIN REsuULT

Several representations may be chosen for cubic lattices. In this paper a
cubic lattice is viewed as a lattice L(S) of signed sets of a set S, where the
cardinality of S is arbitrary, defined as follows.

DermiaTion 2.1 (Lattice of Signed-Sets, Infinite Cubic Lattice). Let S
be a set of arbitrary cardinality. A signed set of S is a pair (47, A7) of
disjoint subsets of S.

L7*(S) denotes the set of all such signed sets on S, ordered by the
opposite of componentwise inclusion:

(A", A7)y < (B*",B7) ifandonlyif B¥CA* and B C A"

L(S) denotes the poset obtained from L *(S) by the adjunction of a
minimum element Q.

It is easy to show that L(S) forms a lattice with a maximum element
1 = (&, @) and a minimum element (. Moreover, the join of L(S) can be
expressed as

(A", A")V(B*,B")=(A"NB*, A NB),

and when (A%, 47) and (B*, B~) are cross-disjoint signed sets, i.e.,
AN B =@ and A N B*= &, then we have

(AT, A")A(B",B")=(ATUB*", A"UB7),
otherwise we have
(A", A YA (B",B7)=0.

Given a lattice L. and an element x € L, we shall use the notation [ x]
to denote the principal filter generated by x, and (x) to denote the
principal ideal generated by x. When x is a face of an n-cube, and y is a
face inside x, then we use 4 (y) to denote the opposite face of y inside x.
Suppose x =(A7, A7), y=(B*,B7), and y <x. Then the diagonal
operation A, on the order ideal (x) is defined by

4,(y)=(ATUB\A", A"UB\A4").
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THeoreM 2.2.  [f a lattice L, with 0 and 1, satisfies the following axioms:

(A1) For x € L, there is an order-preserving map A,: (x) — (x);
(A2) A% = id (the identity map),

(A3) If 0 <a,b <x,thenav A(b) <xifandonlyifa nb=0;
(A4) L is complete;

(AS5) L is atomistic: If x + 0 in L, then there is an atom a € L such
that a < x;

(A6) L is coatomistic: Given x € L, x # 1, there exist coatoms such
that x < s,

then L is isomorphic to the lattice L(S) of signed sets of a set S with A,
serving as the diagonal map on (x).

Conversely, if L is the lattice L(S) of signed sets of a set S, and A (y) is
the antipodal face of y within the face x, then L satisfies conditions (A1)
through (A6).

Throughout this paper we follow the terminology in [8]. Axioms
(A1)-(A3) are exactly the Metropolis—Rota axioms; however, the lattices
in [6] are all assumed to be finite, and as such automatically satisfy
(A4)-(A6). We note that the axioms (A4)-(A6) are necessary for cubic
lattices of arbitrary dimension. Let P be a lattice with 0 and 1. We may
construct the P-signed set lattice L(P) on the set of pairs (a™, a~) such
that a " A a = 0, where a*,a” € P. The order relation of L(P) and the
diagonal operation A, can be defined similarly. One may verify that L(P)
satisfies (A1)-(A3). However, if P is not complete, then neither is L(P).
Also, if P is not atomistic (coatomistic), then neither is L(P).

Although it is not difficult to show that the lattice L(S) of signed sets of
S satisfies all the axioms (A1)-(A®6), to prove the opposite direction of this
statement is not just a verification; instead, we have to start from scratch
and stick to the axioms. A major tool used in our proof is the theory of
implications algebras. To make our proof self-contained, it appears neces-
sary to give a brief review of implication algebras.

3. A BrIEr REVIEW OF IMPLICATION ALGEBRAS

The theory of implication algebras was originally developed by J. Abbott
[1-3], in order to characterize semi-Boolean algebras as well as Boolean
algebras by algebraic equations. In this section we shall briefly review the
theory of implication algebras and include the proof of the theorem that is
used to prove our main result.
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DermviTion 3.1 (Axioms for Implication Algebras). An implication
algebra is a set 4 with a binary operation, called implicational product,
(a, b) — ab satisfying the following axioms:

(1) (ab)a = a,
(12) (ab)b = (ba)a,
(13) a(bc) = blac).

LemMa 3.2, In any implication algebra, the following identities hold
true:

(i) a(ab) = ab,
(i) aa = bb,
(iii) There exists a unique element 1 in A such that for every a € A,
aa =1, la = a, and al = 1.
Proof. (1) Using (I1) twice, we have a(ab) = ((ab)aXab) = ab.
(ii) Using (11), (12), and then (i), we get

aa = [(ab)a]a = [a(ab)](ab) = (ab)(ab). (3.1)

Similarly, we have bb = (ba)(ba). Thus, using (3.1) twice we get aa =
(abXab) = [(ab)bll(ab)b). 1t follows from (I12) and (3.1} that aa =
{(ba)all(ba)a] = (baXba) = bb.

(iii) Since aa is independent of a, we may denote it by 1. By (I1),
la = (aa)a = a, and by (i), al = alaa) =aa = 1. |

Prorosimion 3.3.  Let A be an implication algebra. Define the relation
< bya<bifab =1 Then (A, <) is a partially ordered set with greatest
element 1.

Proof. al =1 immediately shows that a < 1 for every a € A. The
relation is reflexive since aa = 1 by definition. It is transitive as well:
Suppose that a < b and b < ¢, i.e., ab = 1 and bc = 1. Then

ac = a(lc) = a[(bc)c] = a[(ch)b] = (cb)(ab) = (chb)1 = 1.

Hence a < c. Lastly, suppose that ab = ba = 1. Then a = la = (ba)a =
(ab)b = 1b = b. This shows that < is anti-symmetric, and the proof is
complete.

From now on we shall keep < for the partial order defined above for
an implication algebra A. Moreover, by an implication algebra we also
mean the partially ordered set based on the implication algebra.
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LemMma 3.4.  Let A be an implication algebra. Then we have
(i) a < b if and only if b = xa for some x € A. In particular, the
principal order theoretic filter [a] consists precisely of all left multiples of a.
(ii) A is a join-semilattice and a vV b = (ab)b.

(i1} If two elements a, b have a common lower bound p in A, then they
have infimum given by a A b = [(ap) v (bp)lp. In particular, any principal
filter [a) is a lattice.

Proof. () lf a <b, ie, ab=1, then b = 1b = (ab)b = (ba)a. Con-
versely, if b = xa, then ab = a(xa) = x(aa) = x1 = 1, so that a < b.

(ii) Since al(ab)b) = (ab)ab) = 1, we have a < (ab)b. Similarly,
b < (ba)a = (ab)b, so that (ab)b is an upper bound for a and b. Let
a,b < c. Then we may write ¢ as (ca)a. It follows that

[(ab)blc = [(ab)b][(ca)a] = (ca)[[(ab)b]a] = (ca)[[(ba)a]a].
We now compute the factor [(ba)ela:
[(ba)ala = [a(ba)|(ba) = [b(aa)](ba) = (b1)(ba) = 1(ba) = ba.
Therefore,
[(ab)b]c = (ca)(ba) = b[(ca)a] = bc = 1.

This implies that (ab)b < c, that is, (ab)b is a least upper bound for @ and
b. Thus, A is a join-semilattice.

(iii) Note that the right implications product in A is antitone: a < b
implies bc < ac. Indeed, assume ab = 1 (or @ < b). Then

(bc)(ac) = a[(bc)c] = al(cb)b] = (cb)(ab) = (cb)1 = 1.

Suppose p is a common lower bound of a and b. Since ap < ap V bp, we
see that (ap V bp)p < (ap)p = a V p = a. The same argument shows that
(ap Vv bp)p < b; thus, (ap V bp)p is a common lower bound of a and b.
Let ¢ be any common lower bound of a and . We have ap < cp,
bp < cp, and ap V bp < cp; therefore, c <c vV p = (¢p)p < (ap V bp)p,
and the proof follows. [

ProposiTION 3.5. Let A be an implication algebra and p € A. Then the
principal filter [ p] is a complemented lattice under the map a — ap for
azp.

Proof. First we have

apV a={(ap)ala =aa = 1. (3.2)
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Next, note that p < ap (by (i) of Lemma 3.4). By (ii) of Lemma 3.4,
a A ap = [(ap)plp. Since p < a, we have (ap)p = (pa)a = la = a; thus
anap=(apVvap=Ilp=p. |

LemMmA 3.6. In any implication algebra A, principal filters [p] are
distributire.

Proof. We subdivide the proof into four steps as follows:

(i) The map a — ca is isotone for every ¢ € A: Indeed, a < b
implies that b = xa for some x; therefore, cb = c(xb) = x(cb), leading to
ca < cb.

(ii) If a,b € A are such that a A b exists, then ab = a(a A b): Let
p < a,b. We claim that ab = ap Vv b. Since p < b, we have ap < b. On
the other hand, b < ab, so that ap V b <ab. Let ¢ =ap v b. Then
b <c,sothat ¢ = b V c = (ch)b. By (3.2), it follows that (ac)c = a V ¢ =
aVvapVvhb=1 Also,[(ac)c]c = ac V ¢ = ac. Therefore,

(ab)c = (ab)(1c) = (ab)([(ac)c]c) = (ab)(ac) = (ab)(a[(cb)b])
= (ab)[(cb)(ab)] = (cb)[(ab)(ab)] = (cb)1 = L.

Thus, ab < ¢ implving ab = ¢ = ap V b. Since bp > p, from (iii) of Lemma
3.4 it follows that [a(bp)]lp = (ap Vv bp)p = a A b. Hence

a(a A b) =a([a(bp)] p) = [a(bp)](ap) = [b(ap)](ap) = b V ap = ab.

(iii) Let pe A and a,b,c €[p]. Set r =(a A b) V (a A c). Then
we have b V ¢ < ar: Since r > a A b, we obtain blar) > bla(a A b)] =
b(ab) = 1, showing b < ar. The same argument applies to ¢ and the
inequality is proved.

(iv) Finally, we have the distributivity: r =(a Ab) V{a Ac)=a A
(b V ¢). By (iii) and the antitone property of right implicational product,
we have (b Vv ¢)r = (ar)r = (ra)a = la = a because r < a. Therefore,
arv{bvcer=arVva=[{ar)ala =aa =1.Since a >r and (b V ¢) >
r, by (iii) of Lemma 3.4 we have

an(bvcy=larv(bve)yrlr=1r=r=(aAb)V (anc).

The proof is complete. |

We now come to the theorem of Abbott [3], which forms a crucial part
in the proof of our main theorem.
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THeOREM 3.7.  Let A be an implication algebra. Then for any p € A, the
principal filter | pl is a Boolean lattice in the sense that it is complemented
and distributive.

4. PrRoOOF OF THE MAIN THEOREM

As far as proof is concerned, this paper really starts from here. We have
noted that any lattice L(S) of signed sets based on a set § satisfies the
axioms (A1)-(A6). So our task is to show that axioms (A1)-(A6) force L
to be a lattice of signed sets. From now on, we shall assume that L is a
lattice defined by the axioms (A1)-(A6), and A, is also defined in the
axioms.

Basically the Axioms (i) and (ii) in the Metropolis—Rota Theorem say
that 4 _ is an order preserving involution of (x). Suppose a < x. Then
Afa) <A x)=xand A, v 4 (a) <x. Now by Axiom (iii), we have

and(a)=0. (4.1)

This relation was listed as a separate axiom in [6]. We also note the
following immediate consequence of Axiom (A3): If x # 0and 0 <a <ux,
then

av A (a)=x. (4.2)

The following notations are used in the rest of this paper: V' is the set of
atoms of L; C is the set of coatoms of L. For x € L, V_ is the set of atoms

less than or equal to x, and C, is the set of coatoms greater than or equal
to x. In addition, set A, = A.

Lemma 4.1, L is atomic.

Proof. Let x # 0. By (AS5), V. # @ and by (A3), if pe€V,, then
p VvV A (p)=x. Since 4 (p)is also an atom, the proof is complete. |

LEmma 4.2, The A
(A1)-(A3).

. operations are uniquely determined by axioms

Proof. Suppose A, satisfies (A1)-(A3). By (A1) and (A2), both A&, and
A, are order-isomorphisms of (x). Because L is complete (A4) and the
isomorphisms preserve joins (sups), they are hence determined by their
values on the atoms of L and as such are less than or equal to x. So let
a € V,. Then both 4, and A, are atoms, A',(a) < x and 4,(a) < x. Now,
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either 4'(a) = 4, (a) or 4 (a) A 4,(a) = 0. Assume that the latter is true:
By axiom (A3), we have A (a) vV A (4,(a)) = a Vv A (a) < x, which leads
to the desired contradiction. Therefore, the second alternative is false, and
it follows that A, =4, |§

Lemma 4.3.  For any atom a and any coatom s of L, either a < s or
a < A(s), but not both.

Proof. Suppose a < s and a < A(s), that is, a < s and A(a) < 5. Then
1 =a v A(a) < s, which is an obvious contradiction. Next suppose a £ s.
Since s is a coatom, we have @ V s = 1. Now by (A3), @ A A(s) > 0 and
hence a < A(s) since by assumption « is an atom. |

The above lemma turns out to be sufficient to characterize coatoms
of L:

LeEmMA 4.4, If 0 <5 <1 in L has the property that for every atom a,
either a < s or a < A(s), then s is a coatom.

Proof. Suppose s < z. Then there is an atom p such that p £ s and
p < z.Since p £ 5, we have A(p) < s byLemma 4.3, andso p v A(p) < z.
By (4.2) we also have p v A(p) = 1, hence z = 1; and therefore s is a
coatom. |

We remark that in the above proof of Lemma 4.4, the following fact is
implicitly used: In any atomic lattice, suppose y £ x, then there exists an
atom a such that @ £ x and a < y.

Prorosition 4.5. L is coatomic, and for any x > 0 we have x = inf(C)).

Proof. Let x > 0. By (A6), C, # &. Next by (A4), inf(C,) exists. We
wish to show that x = inf(C ). Suppose not, i.e., suppose that x < inf(C,).
Since L is atomic by an earlier result, there exists an atom a such that
a £ x and a < inf(C,). Evidently since a is an atom, a £ x suggests that
a A x = 0. Also, (A3) implies that x v A(a) < 1. Now by (A6), there exists
a coatom s such that x vV A(a) < s. Then we have A(g) < 5. Since s is a
coatom and s > x, it follows that s € C, and s > inf(C,). Because of
a < inf(C ), we get a < s. Finally we are led to a contradiction: 1 =a Vv
Aa)<s. |

The following proposition demonstrates that A, as defined by the
axioms for L is determined by A. Throughout we shall adopt the conven-
tion that C; = & and inf(@) = 1.

ProprosiTiON 4.6.  The automorphism A, as defined on L determines the
family of maps A, for x > O in the following manner: If 0 <y < x, then

4,(y) = inf{x A A(s)ls € C,\C,} = x A A(inf(C,\ C,)). (4.3)
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Proof. For x =1, Eq. (4.3) reduces to A(y) = A(inf(C,)), which is
Lemma 4.5. So we may assume that x < 1. '

Let a be an atom with a <y, and let s€ C,, s € C,, ie, y <s but
x £ 5. We claim that 4 (a) < A(s): If not, we have 4 (a) < s since A (a)
is an atom and s is a coatom. Because ¢ <y <s, we have a A 4,(a) <,
that is, x < s, a contradiction. Thus, we have shown that A (a) < A(s) for
any atom a <y and any coatom s € C, \ C,. Since L is atomic, and 4,
and 4 are lattice isomorphisms, we obtain 4 (y) < (s)foranys € C,\ C,,
that is, A (y) < AGnf(C \ C,)). It follows that '

A,(y) <x A A(inf(C,\ C,)).

To show that the above inequality holds with equality, let ¢ be an atom
such that a <x A A(inf(C |\ C,)). We claim p < A (y), or equivalently,
A (a) < y. If not; namely, A (a) Ay =0 (since a is an atom), we shall
derive a contradiction. By axiom (A3), v V a < x. Since L is coatomic,
there exists a coatom s such that s >y V a but s # x. It follows that
a < A(s). However, from y Vp <s we have a <s. This leads to a
contradiction because we cannot have that both a < A(s) and a < 5 hold
for an atom a and a coatom s. |

CororLary 4.7. 44, (y) = inf{ld(x) A sls € C,\ C,} = Alx) A
inf{sls € C,\ C,}.

We now come to the key construction of this paper-—cubic implication
algebra. Recall that L™ is the semilattice obtained from L by removing
the minimum element (. For x,y € L%, we defined the implication
product by

x})zyVAAx\/y(y)‘ (44)

First we show that the above definition of implication product is
consistent with the order structure of L*:

TheoreEMm 48. Forx,ye L™, xy = 1ifand only if x < y.
Proof. 1f x <y, then x Vy =y and hence
xy=yVvd44, , (y)=yVvAa(y)=1
To prove the converse, suppose x £ y. We wish to show that xy < 1. Note

that x £ y is equivalent to y < x V y. Let z = x Vv y. The claim amounts
to showing that there exists a coatom s such that s >y v AA_{y). To see
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this, recall that A4 (y) = A(z) A inf(C, \ C,), which is less than or equal
to inf(C, \ C,). Since x £y, there exists a coatom s € C,\ C,. Clearly,
such an element s is greater than or equal to inf(Cy\Cx), as well as
greater than or equal to y. It follows that y v 44,(y) <s <1. |

Proposition 4.9. Let x,y € L*. Then C,, = C,\C,, hence xy =
inf(C,\ C,).

Proof. 1f xy =1, then x <y, and C, c C,, implying C,\C, = &,
which is consistent with conventions inf(&) = 1 and C, = @.

Now we suppose that xy < 1. Since

A,,,(y)=(xVvy) AA(Inf(C,\C,,)) = (x Vy) AA(inf(C,\ C,)),

it follows that
A(inf(C_‘. \ Cx)) =4,,,(5). (4.5)
Let 5 be any coatom in C, \ C,. By (4.5) we obtain
A(s) 2 A(inf(C,\C,)) 2 4, (¥),
ie., s > AAIV},(y). Since s > y, we conclude s > xy; this establishes that
cA\C. cC,,.

There remains to show that €, , c C,\C,. Let s € C,,, i.e., s 2 y and
s=A44,, (y). If s>x, it would follow that s > x V y and hence s >
4., (y)because A, (y) <x Vy Hencel =4, (y)Vvaa, (y)<s,
a contradiction; therefore s & C,. We conclude that C,, <« C,\ C,. |

TueoreM 4.10. L™ forms an implication algebra.
Proof. One needs to verify that for all x,y,z € L™,
(B1) (xy)x = x.
(B2) (xy)y = (yx)x.
(B3) x(yz) = y(xz).

By Proposition 4.9, (B1)-(B3) are immediate from the following identi-
ties by taking the infimums, where ' stands for the complementation with
respect to the set C of coatoms of L:

(1) Ciyp = C\C,y,=C,NC,,=C,N(C,NCY =C,N(C, U
c)=C.

(2) Coyyy = C,\Cyy =C, N (C, N CY =C,N(C,UC)=C, N
C,, and C,,,, =C\C,,=C, N, NCY=C,N(C,uC)=C, N
C,.

(3) Cyyoy = C NG, =(C.NCHNC,, and Cy,;, = C.\C, =

(C.nCHNC,. 1
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The implication algebra structure of L™* leads us to conclude that every
principal filter of L* forms a Boolean lattice in the sense that it is both
complemented and distributive. Note that the term Boolean lattice is often
used to refer to the lattice of subsets of a set § ordered by inclusion.
Evidently such lattices are referred to as power set algebras or the power
set lattices of the set S. In the case of finite lattices either interpretation
may be asserted. However, for infinite Boolean lattices, there exists a gap
between these two notions: In the representation theory of infinite Boolean
lattices it is known that a Boolean lattice is isomorphic to some power set
lattice if and only if it is both atomistic and complete (see [3]). Fortunately,
our case is based upon the principal filters of L™ and here these two
concepts coincide with each other.

THeorem 4.11.  For any x € L*, the principal filter [ x] is isomorphic to
the power set lattice of C..

Proof. Suppose we have shown that [x] is isomorphic to a power set
lattice, then it is clear that [x] is isomorphic to C,. The completeness of
[x] is inherited from L. Since L is coatomistic, so is [x]. Therefore, the
dual lattice of [x] is isomorphic to a power set lattice, and so is [x]. ||

We are now ready to finish the proof of the main theorem of this paper.

Proof of Theorem 22. Let a be an atom of L and set $ =C,. It
follows from Lemma 4.3 that C = § U A(S), with the property that § N
A(S) = &. The following observation will be used immediately: Suppose
that x,y € L™ satisfy the relation x Ay = 0. There exists a coatom s
such that s > x and A(s) > y. Indeed, x Ay = 0 implies x vV A(y) < 1 by
(A3); any coatom s > x V A(y) will serve this purpose.

Define the map ¢: L(S) — L by

e((A*, A7)) = inf(A*) Ainf(A(A7)), (AT, A7) € L(S), (4.6)

and ¢(0) = 0. Note that inf(A4*) and inf(4~) are strictly greater than 0
for any signed set (4*, A7) € L(S) because A*, A" § = C,. It is clear
that ¢ is order-preserving and that the atoms (S, &) and (J, §) of L(S)
map to a and A(a), respectively.

On the other hand, we define : L — L(S) by

¥(x) = (C, NS, A(CHNS), xelL* (4.7)
and ¢(0) = 0. For x >0, it is clear that C. N AC,) = &, ie., that

(C, NS, A(C,) N S) is an element of L*(S). Moreover, x <y is equiva-
lent to C, € C, and hence ¢ is order-preserving.
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Next, x = inf(C, N §) A inf(C, N A(S)) immediately shows that
e(y(x)) = 1 for x € L*; since ¢(¢(0)) = 0 as well, we conclude that

po=1,. (4-8)

Let x = (A", A7)). By definition, x = inf(4*U A(A7)). The fact
that the principal filter {x] is a power set algebra means that [x] is
irredundantly coatomic, i.e., every element in [ x] is uniquely representable
as a meet of coatoms in C,. In particular, if D is a set of coatoms such
that x = inf(D), then D must be C, because x = inf(D) implies that
D ¢ C,. We now obtain

C,=ATUA(A™).

It follows that C, NS =A4" and A(C,)NS=A4" since A", A7CS,
AMATINS =0, and A(A7)N S = . But this means that (x) =
(A7, A7) and we conclude that

Yoo = ]1,(5‘)- (4.9)

Combining (4.8) and (4.9) we reach the conclusion that ¢ is an order
isomorphism, hence L = L{(§).

Finally, we show that the choice of § is unique up to isomorphism. If
there exists 7 such that L(T) =L, then L(S) = L(T). Let a be an
isomorphism from L(S) to L(T). Note that an atom of L(S) is a signed
set (A, B) such that 4 U B = §. Let (A4, B) be such an atom of L(S);
then the image of (A, B) under « is an atom { X, Y) of L(T). Clearly, we
have T = X N Y. Next, consider the principal filter [ A, B] generated by
(A, B) in L(S) and the principal filter [X,Y] generated by (X,Y) in
L(T). Notice that the map a induces an isomorphism between [ 4, B] and
[ X, Y] It follows that there also exists an isomorphism between the set of
coatoms of [ 4, B] and the set of coatoms of [ X, Y] Now, a coatom of
[A, B] is either of the form ({a}, @) or (@, {b}), where a € 4 and b € B;
also, a coatom of [ X, Y] is either of the form ({x}, @) or (&, {y}). Clearly,
there exists a natural bijection between S and the set of coatoms of
[ A, B]. The same argument holds for 7 and the set of coatoms of [ X, Y ].
Thus, § = T.

The uniqueness of 4, (Lemma 4.2) implies that A, is indeed the
diagonal map on (x). ]



396 CHEN AND OLIVEIRA

ACKNOWLEDGMENTS

This paper is based upon the main results of J. S. Oliveira’s Ph.D. thesis [7} written under
the direction of Professor Gian-Carlo Rota. The authors thank H. R. Fischer for his untiring
efforts in overseeing the development of this work; and Professor Rota for valuable sugges-
tions and encouragement. The authors also thank C. G. Bailey, M. Hawrylycz, and
N. Metropolis for helpful comments.

REFERENCES

1. J. C. Assotr, Implication algebras, Bull. Math. Soc. Sic. Math. R.S. Roumanie 11, No. 59
(1967, 1.

2. J. C. AsBotT, Semi-Boolean algebra, Mat. Vesnik 19 (1967), 177-198.

3. J. C. AmBoTT, “Sets, Lattices, and Boolean Algebras,” Allyn & Bacon, Boston, MA, 1969,

4. G. BirknoFF, Lattice theory, in “American Mathematical Society Colloquium Publica-
tions,” Vol. 25, Amer. Math. Soc., Providence, RI, 1979.

5. G. Gratzer, “Lattice Theory,” Academic Press, New York, 1978.

6. N. MeTroroLIs aND G.-C. RoTta, Combinatorial structure of the faces of the n-cube,
SIAM J. Appl. Math. 35 (1978), 689-694.

7. J.S. Ouveira, “The Theory of Cubic Lattices,” Ph.D. thesis. MIT, 1992,

8. R. StanLEY, "“Enumerative Combinatorics,” Vol. I, Wadsworth & Brooks. Monterey, CA,
1986.



