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We develop the mathematical machinery for the construction of an algebraic-combi-
natorial model using Petri nets to construct an oriented matroid representation ofEditor Query:
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biochemical pathways. For demonstration purposes, we use a model metabolic
pathway example from the literature to derive a general biochemical reaction net-
work model. The biomolecular networks define a connectivity matrix that iden-
tifies a linear representation of a Petri net. The sub-circuits that span a reaction
network are subject to flux conservation laws. The conservation laws correspond
to algebraic-combinatorial dual invariants, that are called S- (state) and T- (transi-
tion) invariants. Each invariant has an associated minimum support. We show that
every minimum support of a Petri net invariant defines a unique signed sub-circuit
representation. We prove that the family of signed sub-circuits has an implicit or-
der that defines an oriented matroid. The oriented matroid is then used to identify
the feasible sub-circuit pathways that span the biochemical network as the positive
cycles in a hyper-digraph.
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1. BACKGROUND

Biochemical reaction networks are defined by sets of chemical reactions cou-
pled through common reacting species. In general, the actual number of reacting
species can be quite large, for example, tens to hundreds of thousands of reactions
may be needed to describe the complex, coupled phenomena. Although one could
solve the set of reactions by using traditional partial differential equation (PDE)
solvers, as is often done in the chemical process industry, this does not provide
insights into the various pathways and how biomolecules connect to each other, for
example, through feedback loops, oscillators, etc. Furthermore, even though there
are many possible connected processes, there are often not large amounts of key
molecules present in the cell, sometimes only on the order of thousands to millions.
This is in contrast to dealing with molar quantities (∼6× 1023 molecules/mole).
Even for picomolar quantities, there are still∼1012 molecules, far larger than the
103 to 106 proteins key to the reaction networks. For such small quantities, be-
cause molecules react only in integer amounts, discrete mathematical approaches
may be more appropriate for the study of such systems as compared to using con-
tinuous PDE solvers, cf.Arkin et al. (1998), McAdams and Arkin(1997), and
Samoilovet al. (2001). The integration of a system of chemical kinetic equations
numerically could negate several thousand molecules per time step in round-off
errors alone. Therefore, the need for combinatorial models to accomplish the task
of computationally identifying biochemical pathways is clearly indicated.

In this paper, we describe the use of Petri nets, cf.Reisig(1985), given as gen-
eralized hyper-digraphs, to describe biochemical reaction networks. In addition,
we define some of the basic mathematical theorems needed in order to use Petri
nets in the description of biological networks. Such graph-theoretic approaches
will be useful in studying biochemical networks, as they provide insight into how
molecules are coupled and how one can selectively interfere with a network to
produce a desired biochemical change. Graphical network models can be used to
provide a computational framework in the presence of unknowns that allows one
to test the operational consistency of a network model.

Various attempts have been made to produce a single graph-theoretic model of
biochemical pathways that captures not only the dynamical system’s complexity of
the chemical kinetics but also generates an algebraic model of biochemical circuits
using Boolean switching circuit logic. Examples of such attempts are: the alge-
braic models of biochemical reaction pathways ofAlberty (1991a,b, 1992, 1994,
1996) andClark(1988); the binary networks models ofKauffman(1971, 1993); the
metabolic network graphs ofKohn and Letzkus(1983), Kohn and Lemieux(1991),
Karp(1998), Seressiotis and Bailey(1988), andMavrovouniotis and Stephanopou-
los (1990); the Petri net models of metabolic pathways inReddyet al. (1996); and
the metabolic reaction network models ofSchilling and Palsson(1998, 1999) and
Schilling et al. (1999). The common thread that runs through these various ap-
proaches is that the biochemical system at steady state has a unique linear alge-
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braic representation that indicates how to obtain flux balanced systems of chemical
reaction equations.

Building on this rich history and synthesizing the best of these approaches, we
rigorously define the mathematical framework necessary to identify the circuits that
extremally span the biochemical reaction pathways as the positive-valued cycles of
hyper-digraphs. This graph-theoretic approach has numerous advantages over the
linear algebraic approach, as we will show. We extend these earlier approaches
by constructing a combinatorial geometric model of the biochemical reactions, re-
ferred to as an oriented matroid. This combinatorial geometry construction defines
a finite-dimensional space over the rationals,Q, which in turn defines sets of sub-
circuits in a graph that are the spanning trees of a hyper-digraph of the biochemical
reaction network.

By constructing the matroid of sub-circuits over the rationalsQ
n instead of the

realsRn, we reduce the computational complexity of the search space. By us-
ing integer arithmetic, we avoid the round-off errors introduced by approximating
real numbers with rationals, thereby avoiding the problem of introducing spurious
cycles. It follows that searching for sub-circuits over the rationals is computation-
ally less expensive than searching over the reals. We are effectively constructing
an integer-based lattice representation of a combinatorial geometry that faithfully
models the linear algebraic system of the biochemical rate equations as a partially
orderedn-set of sub-circuits of a hyper-digraph.

The combinatorics of our model represents biochemical pathways in terms of
counting arrangements of colored balls in boxes, where the balls are molecular
species with specific attributes that occupy marked places in the network. The
partitions of multi-sets of reacting chemical species (the colored balls) are arranged
into the set of marking place holders of kinetic reactions referred to as places (the
boxes). This operational process generates a cycle decomposition of our hyper-
digraph into ann-set of sub-circuits. The complex operational processes associated
with biochemical pathways lend themselves to being faithfully modeled by the
hyper-digraph abstraction of a Petri net.

In all generality, a Petri net is a directed, simply-connected bi-partite graph, com-
posed of nodes (vertices) and edges, cf.Berge(1973) andDiestel(2000). Every
Petri net has two types of nodes: state nodes, called places

�� ��p , and transition
nodes, denoted byt . State nodes hold information called tokens whereas tran-
sition nodes define a set of conditions or rules that regulate the flow of informa-
tion from one state node to another, i.e., information from state

�� ��p1 is transferred
to state
�� ��p2 when some set of transition conditionst are satisfied. The tran-

sition constraint rules can be quite complicated and may contain, for example,
time-dependent probabilistic and/or conditional logic. Thus, they need not only
represent reacting chemical species, but can also represent biochemical structures
such as vesicles in which different chemistry can occur. Diagrammatically, this is
represented as
�� ��p1 → t →
�� ��p2 .
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From an operational control systems theory point-of-view, the transitionst act
as the control laws for the system whereas the states

�� ��p act as the state variables
in the Petri net representations of the biochemical reactions. The Petri net repre-
sentation is a combinatorial abstraction of the molecular interactions defined over
a chemical reaction space where the transitions define the operational conditions or
rules that must be satisfied for a reaction to occur. In this graphical representation, a
chemical species moves from one state to another subject to a transition rule based
on chemical equilibria (thermodynamics) or kinetics. The chemical species do not
pass formally through the transition but rather are subject to the rules described by
the transition.

Two state nodes are connected subject to a transition node simply if it is pos-
sible for the second state to be reached from the first state through some phys-
ical/chemical mechanism which is reversible. Of course, the actual amount of
chemical system reversibility may be very small and is dependent on the steady-
state condition and/or kinetic rate constants. Since all of the reactions under consid-
eration are potentially reversible, then these paired sets of transitions are identified
explicitly. The implications of the complexity in the transition rules is deferred to
a subsequent paper, and, in this discussion, only the existence of the species mov-
ing through the states of the pathways are indicated. In other words, we do not
assign weights or probabilities to the paths of the reactions—we only indicate the
existence of the reaction paths and their directions.

We can use our combinatorial-graphic network model to design empirical mod-
els and test them against flux conservation laws. By construction, each constituent
sub-circuit in the hyper-digraph that models a biochemical network satisfies a flux
conservation law. This conservation law can be shown to be the analog of Kirch-
hoff’s circuit current law.

Alternative chemical network derivations of analogs to Kirchhoff current and
voltage laws, using bond graphs, have been derived inOsteret al.(1973), Schnaken-
berg(1979) andPeusner(1986). It will be shown in a sequel that, with the introduc-
tion of Petri net invariants, these results have a natural combinatorial generalization
in terms of maximum/minimum flows. This combinatorial generalization recasts
the Kirchhoff laws in terms of oriented matroids that define oriented matroid pro-
grams subject to objective functions, which are in turn used to identify the chemical
network flow sub-circuit paths that either maximize or minimize chemical circuit
impedance, capacity, inductance and bulk species transport for a biochemical net-
work.

The flux conservation law governs each chemical equation that defines a bio-
chemical reaction pathway. All combinations of the sub-circuits, up to and includ-
ing the entire network, therefore satisfy this conservation law. The conservation
law also identifies a set of network invariants. These invariants are used in the
consistent graphical network model to define a set of tests. The tests are used to
search for the set of admissible biochemical outcomes to the hypothetical introduc-
tion of unknowns while guaranteeing the preservation of the network conservation
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law. Therefore, this process model infers only physically realizable outcomes. An
alternative approach is to quantitatively generate numerical solutions to the reac-
tion/diffusion chemical transport equations that model the physical processes. In
theory, good numerical approximations for the reaction rates and chemical con-
centrations can be determined and then used to tune the reaction model. However,
this approach does not produce a method for checking the logical consistency of
the model itself. In other words, the solution may indicate the need to change a
parameter in order to satisfy the hypothesis that generates nonphysical empirical
solutions. Continuum-based differential equation solvers potentially have serious
drawbacks, considering the fact that continuum-based numerical analysis schemes
can wash out hundreds to thousands of molecular species due to round-off errors
thereby missing very rare events or introducing sub-circuit paths that do not corre-
spond to physical network paths.

2. BIOCHEMICAL REACTIONS , PETRI NETS, AND GRAPHS

The complex biochemical processes can be considered to be composed of two
fundamental types of biochemical building blocks: molecular reaction and com-
plex formation. These fundamental building blocks, summarized in Table1, can
be considered as Petri net stencils. Each of these reactions has associated with it
a Petri net representation, which pictorially depicts the communication pathways,
and its incidence matrix, which mathematically specifies which states are receiving
and/or transmitting information to each other subject to the transition rules. For-
ward paths are denoted by solid lines with directional arrows, and backward paths
are denoted by dashed lines with directional arrows. In the incidence matrix, a state�� ��p would have a+1 entered for transitiont if information is propagating subject
to the transition node into the state node; similarly, a state would have an entry−1
for the transition if the information is propagating from the state node subject to
the transition node.

The simple reversible reaction path is referred to as either a cycle or a circuit.
In this context, reversible means that there is a transition rule governing the return
pathway signal with the requisite rules contained in its transition, which comple-
ments the forward path. The reaction is composed of two forward path segments
and two backward path segments. As an example of this reaction stencil, consider
the state
�� ��p1 to be the enzyme bound state of the substrate and the state

�� ��p2 to be
the enzyme bound state of the product. The bi-directional arrow of the biochemical
representation indicates that the reaction is reversible.

In the example, the arrow from
�� ��p1 to t1 is evaluated to be−1 to indicate that

the signal is leaving state
�� ��p1 , whereas the arrow fromt1 to

�� ��p2 is evaluated to
be+1 to indicate that the signal is entering state

�� ��p2 . Similarly, the arrow from�� ��p2 to t2 is evaluated to be−1 to indicate that the signal is leaving state
�� ��p2 ;
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whereas the arrow fromt2 to
�� ��p1 is evaluated to be+1 to indicate that the signal

is entering state
�� ��p1 . The incidence matrix associated with the Petri net follows

accordingly. Note that the columns of the incidence matrix always sum to zero for
a balanced system in terms of sources and sinks.

A key goal of this work is to find sub-circuit pathways through the Petri net that
correspond to biochemically feasible reaction pathways. To accomplish this, we
first develop some background theory of cycles, hyper-digraphs and Petri nets.

2.1. Basic definitions of standard Petri nets.

DEFINITION 1. A Petri netis an ordered 4-tuple,5 = 〈P, T, I ,O〉, defined over
Q, where

— P = {p1, . . . , pn} is a finite set ofplaces;
— T = {t1, . . . , tm} is a finite set oftransitions;
— I : P × T −→ {0,1};
— O : P × T −→ {0,1};
— for all p andt , I (p, t)O(p, t) = 0.

I defines theinput set of arcs from places to transitions andO defines theoutput
set of arcs from transitions to places.

For a fixed transitiont we define

•t = {p ∈ P | O(p, t) = 1}

t• = {p ∈ P | I (p, t) = 1} ,

where•t is the set ofinput places to transitiont andt• is the set ofoutputplaces to
transitiont .

More generally, we can define the set of input/output places for anyX ⊆ T by

•X = {p ∈ P | for somet ∈ X O(p, t) = 1}

X• = {p ∈ P | for somet ∈ X I (p, t) = 1} .

We can also define similar sets for places. Ifp is a fixed place then

•p = {t ∈ T | I (p, t) = 1}

p• = {t ∈ T | O(p, t) = 1} .

DEFINITION 2. A markingof a Petri net5 is a functionM : P −→ N.
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DEFINITION 3. A transition t is enabledby a markingM iff for all p ∈ •t ,
M(p) ≥ I (p, t).

Any transition that is enabled by a markingM canfire. This produces a new
markingM ′ defined by

M ′(p) = M(p)+ O(p, t)− I (p, t).

We will use the notation

M
t
→ M ′

to indicate thatt is enabled byM and the firing oft producesM ′.
More generally, the firing of a sequence of transitionsσ = 〈t1, t2, . . . , tk〉 such

that

M0 = M

Mi
ti+1
→ Mi+1

Mk = M

will be denoted by

M
σ
→ M ′.

Such aσ is called afiring sequence.

DEFINITION 4. A marking M is said to bereachablefrom a markingM0 iff there
is a firing sequenceσ such that

M0
σ
→ M.

The set of all markings reachable fromM0 is

R(M0).

The operation of firing a Petri net is a linear operation on a vector corresponding
to the marking. This fact means that we can use all the machinery of linear algebra
to deduce facts about Petri nets.

DEFINITION 5. Let5 = 〈P, T, I ,O〉 be a Petri net. LetP = {p1, . . . , pn} and
T = {t1, . . . , tm}. Theincidence matrixof 5 is then×m matrix

Ni j = O(pi , t j )− I (pi , t j ).
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It is now clear that ift = t j is a transition and is enabled byM then firing t
produces the marking

M ′(pi ) = M(pi )+ Ni j

= M(pi )+ (Nej )i .

Therefore,

M ′ = M + Nej

whereej is them-vector

ej = 〈0 · · · 1 · · · 0〉t .
↑

position j

This means that ifσ =
〈
t j1, . . . , t jk

〉
is a firing sequence enabled byM then we get

afiring vectornσ defined inductively byn0 = 〈0, . . . ,0〉 and

ni+1 = ni + eji+1.

Therefore,

M0 = M

= M + Nn0

Mi+1 = Mi + Neji+1

= M0+ Nni + Neji+1

= M + Nni+1

and soM ′ = M + Nnσ . It is easily seen that thel th-component ofnσ is the same
as the number of occurrences oft jl in σ .

As an application of these ideas, there are two associated invariants of a Petri net
5.

2.2. S-invariants.

DEFINITION 6. Let5 = 〈P, T, I ,O〉 be a Petri net with incidence matrixN.

(a) An n-vector of rational numbersv is anS-invariantof 5 iff

N tv = 0.
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(b) An n-vectorv is apositive S-invariantof5 iff v is an S-invariant and all entries
in v are greater than or equal to 0.

(c) Two S-invariantsv1 andv2 areequivalentiff there is some rational numberq
such thatqv1 = v2.

We have used rational numbers to simplify the mathematics. It is clear that the
set of all S-invariants is precisely the null space ofN t inQn, and as such defines a
canonical subspace of the vector spaceQn. Therefore, any rational multiple or sum
of S-invariants is also an S-invariant. Since any rational vector has many multiples
with purely integer entries, we will ignore the fact that entries may not be integers.

PROPOSITION 1. An n-vectorv is an S-invariant of a Petri net5 iff for any mark-
ing M0 and any M∈ R(M0) we have the ‘conservation law of fluxes’ given by

vt M = vt M0.

Proof. Suppose thatv is an S-invariant andM ∈ R(M0). Then we haveM =
M0+ Nn for some firing vectorn. Hence

vt M = vt M0+ vt Nn

= vt M0+ (N
tv)tn

= vt M0+ 0tn

= vt M0.

Conversely, suppose thatvt M = vt M0 for all M ∈ R(M0) and anyM0. Then for
eachM0 andM ∈ R(M0), we must have

(N tv)tn = 0 (1)

for all firing vectorsn. Then, for eacht = t j ∈ T we letλi j > I (pi , t j ). LetAuthor:
Please check the
position of proof
symbol.

Mi j (pl ) = δli λi j , whereδli is the Kronecker delta.Mi j is a marking that enablest j

and so firingt j with this marking gives a firing vectorn = ej . Therefore, [by (1)],
we have(N tv)tej = 0 for all j and soN tv = 0. 2

This result gives us a conservation law in the following sense:

vt M =
n∑

i=1

vi M(pi ),

so that a weighted sum of the number (M0(pi )) of tokenslocated atpi and moved
through the net by repeated firings never changes.

Clearly, this makes most sense when all of thevi ≥ 0 and are integers. In our
examples, we note that we always expect flux-conservation, which is equivalent to
the vector of all ones being an S-invariant. Another way to say this is that the sum
of every column of the incidence matrix is zero.

An S-invariant lives only on a certain part of the net.
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2.3. Supports and signed supports.

DEFINITION 7. Let v be an S-invariant for a Petri net5. Theplace-supportof v
is the set of places

suppP(v) = {pi | vi > 0} .

Thetransition supportof v is

suppT (v) =
{
t ∈ T

∣∣ •t ∩ suppP(v) 6= ∅ andt• ∩ suppP(v) 6= ∅
}
.

This set induces thev-componentof 5 given by

5 �S v =
〈
suppP v, suppT (v), I � suppP(v)× suppT (v),O � suppP(v)× suppT (v)

〉
.

Note that5 �S v is also a Petri net.

DEFINITION 8. The place-support of an S-invariantv is minimaliff it is nonempty
and does not contain the place-support of any nonequivalent S-invariant.

Minimal supports are useful in that we can recover all supports from the minimal
ones.

Place-supports are completely determined by the signs of the S-invariants. We
note that ifv is an S-invariant, then so is−v and the place-supports of these two
vectors together ‘capture’ the use of the invariant. For this reason, it is of some
interest to reattach these two supports.

DEFINITION 9. Let v be an S-invariant. Thesigned supportof v is the signed set

ssupp(v) = 〈{i | vi > 0} , {i | vi < 0}〉 .

For technical convenience, we will also assume that〈∅,∅〉 is also a signed support.

2.4. T-invariants.

DEFINITION 10. Let5 = 〈P, T, I ,O〉 be a Petri net with incidence matrixN.

(a) An m-vector of rational numbersw is aT-invariantof 5 iff

Nw = 0.

(b) An m-vector w is a positive T-invariantof 5 iff w is a T-invariant and all
entries inw are greater than or equal to 0.

(c) Two T-invariantsw1 andw2 areequivalentiff there is some rational numberq
such thatqw1 = w2.
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REMARK 2.1. If 5 = 〈P, T, I ,O〉 is a Petri net, then we can form the dual net
5′ =

〈
T, P, I ′,O′

〉
where I ′(t, p) = I (p, t) and O′(t, p) = O(p, t). It is easy

to see that the incidence matrix of5′ is the transpose of that for5 and that S-
invariants of5′ are the T-invariants of5. Thus, much of the theory of the two
kinds of invariants is the same and we do not need to duplicate it.

As with the S-invariants, we have used rational numbers to simplify the math-
ematics. The set of all T-invariants is exactly the null space ofN in Qn and so
is a subspace. Therefore, any rational multiple or sum of T-invariants is also a
T-invariant.

T-invariants essentially identify those transitions, within the Petri net, which must
fire to return the Petri net to an original state. Solutions determine regions of the
net where it is possible for a place to lose a token and have it returned by some
firing sequence of transitions.

DEFINITION 11. A marking M of a Petri net5 is reproducibleiff there is some
M ′ ∈ R(M) such thatM ∈ R(M ′).

Notice that a markingM is reproducible iff there is a nontrivial firing sequence
σ enabled byM such thatM

σ
→ M .

PROPOSITION 2. A Petri net5 has a reproducible marking iff5 has a positive
T-invariant.

Proof. Let N be the incidence matrix of5. Let III = [I (pi , t j )] and OOO =
[O(pi , t j )] be the input and output matrices. ThenN = OOO − III .

If w is any T-invariant thenNw = 0 iff OOOw = III w. Let M be a marking defined
so thatM(pi ) is thei th entry ofOOOw. Let σ be the firing sequence

〈 t1, . . . , t1︸ ︷︷ ︸, t2, . . . , t2︸ ︷︷ ︸, . . . , tm, . . . , tm︸ ︷︷ ︸ 〉.
w1repeats w2repeats wmrepeats

Then the firing vectorn is equal tow, so thatM ′ = M + Nw = M . We just need
to check that the appropriate transitions are enabled.

Let M0 be the initial marking andMi the result of firing thei th element ofσ . We
argue inductively as follows.M0 enablest1 as for alli M0(pi ) is

∑m
j=1 O(pi , t j )w j

=
∑m

j=1 I (pi , t j )w j ≥ w1I (pi , t1). By definition,M1(pi ) = M0(pi )+O(pi , t1)−
I (pi , t1).

Suppose we have the result forMk. Let j be such that
∑ j

l=1w j−1 ≤ k <
∑ j

l=1wl

andnk = k−
∑ j

l=1w j−1. Then we are attempting to firet j . Letwk =
∑ j−1

l=0 wl el+
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nkej . We haveMk = M0+ Nwk. We have 0≤ nk < w j . Now we have

Mk(pi ) = M0(pi )+

j−1∑
l=1

Ni lwl + Ni j nk

=

m∑
l=1

I (pi , tl )wl +

j−1∑
l=1

(O(pi , tl )− I (pi , tl ))wl

+ (O(pi , t j )− I (pi , t j ))nk

=

j−1∑
l=1

O(pi , tl )wl +

m∑
l= j+1

I (pi , tl )wl + I (pi , t j )w j

+ (O(pi , t j )− I (pi , t j ))nk

≥ I (pi , t j )w j + (O(pi , t j )− I (pi , t j ))nk

= O(pi , t j )nk + I (pi , t j )(w j − nk)

≥ I (pi , t j ).

Conversely, suppose thatσ is a nontrivial firing sequence enabled byM such that
M

σ
→ M . Then we have a firing vectorn such thatM = M + Nn and soNn = 0;

n is clearly positive. 2

A T-invariant also lives only on a certain part of the net.

DEFINITION 12. Let w be an T-invariant for a Petri net5. Thetransition support
of w is the set of transitions

suppT (w) = {ti ∈ T | wi > 0} .

Theplace-supportof w is

suppP(w) =
{

p ∈ P
∣∣ •p∩ suppT (w) 6= ∅ and p• ∩ suppT (w) 6= ∅

}
.

This set induces thew-componentof 5 given by

5 �T w =
〈
suppP w, suppT (w), I � suppP(w)× suppT (w),O � suppP(w)× suppT (w)

〉
.

Note that5 �T w is also a Petri net.
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2.5. Hypergraphs, hyper-digraphs, graphs and digraphs.Petri nets are good
models for the flow of objects or data through a network. Our approach to analyz-
ing and understanding these models is primarily graph-theoretic. To do this, we
first introduce a graph equivalent of a Petri net and then go on to consider the space
of hyper-digraphs. Notably and by definition, all graphs are hypergraphs, but in
all generality the converse is not true. For the purposes of this paper, every Petri
net is a hypergraph, but not necessarily a graph. This fact can imply the need for
graph augmentation of our Petri net model in order to take full advantage of the
algebraic-combinatorial properties of graphs.

DEFINITION 13. A hypergraphis a pairH = 〈V, E〉 whereV is a nonempty set
of verticesandE ⊆ ℘(V) is the set ofedges.

DEFINITION 14. A directed hypergraph, or hyper-digraph, is a pairH = 〈V, E〉
whereV is a nonempty set ofverticesand E : ‖E‖ −→ V {−1,0,1} is the set of
edges.

In the definition above, we have chosen to have a set of edges indexed by a set
‖E‖. In practice, only the range of the functionE is important and so, by a slight
abuse of notation, we often writee∈ E to mean thate is in the range ofE.

Note that ifH is a directed hypergraph, we can think of the set of edges as a
family of signed sets whereE(x) corresponds to the signed set〈

x+, x−
〉
= 〈{v | E(x)(v) = 1} , {v | E(x)(v) = −1}〉 .

DEFINITION 15.
(a) Let H = 〈V, E〉 be a hypergraph. Then theincidence matrixof H is the

V × E matrix

I(v,e) =

{
1 if v ∈ e

0 otherwise.

(b) Let H = 〈V, E〉 be a directed hypergraph. Then theincidence matrixof H
is theV × E matrix

I(v,e) = e(v).

DEFINITION 16. A graph is a hypergraphG = 〈V, E〉 such thate ∈ E impliese
has two elements.

DEFINITION 17. A digraph is a directed hypergraphG = 〈V, E〉 such thate∈ E
impliese+ ande− both have one element.

Petri nets are equivalent to directed hypergraphs as follows.
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DEFINITION 18. Let 5 = 〈P, T, I ,O〉 be a Petri net. We define the directed
hypergraphHP = 〈V, E〉 by:

V = P

‖E‖ = T

if t ∈ T thenE(t) = 〈{p | O(p, t) = 1} , {p | I (p, t) = 1}〉 .

DEFINITION 19. Let H = 〈V, E〉 be a directed hypergraph. We define the Petri
net5H as follows:

P = V

T = ‖E‖

O(p, t) = E(t)(v)

I (p, t) = −E(t)(v).

It is clear that these two operations are mutual inverses and so the study of Petri
nets is equivalent to the study of hypergraphs.

DEFINITION 20. Let X be any set. Then

(a) a signed subsetof X is a pairS= 〈A, B〉 whereA andB are disjoint subsets
of X. We writeS+ = A for thepositivepart ofSandS− = B for thenegative
part ofS. S= A∪ B is thesupportof S;

(b) thesigned set familyof X is

S (X) = { 〈A, B〉 | 〈A, B〉 is a signed subset ofX} .

DEFINITION 21. If 〈A1, A2〉 and〈B1, B2〉 are two signed subsets ofX, then

〈A1, A2〉 ≤ 〈B1, B2〉 iff B1 ⊆ A1 and B2 ⊆ A2.

There are a number of possible operations on signed subsets—seeMetropolis and
Rota(1978) andBailey and Oliveira(1998) for a general view of such operations.
In this context we need the following two operations.

DEFINITION 22. Let A =
〈
A+, A−

〉
andB =

〈
B+, B−

〉
be two signed subsets of

X. Then thecompositionof A andB is

A ◦ B =
〈
A+ ∪ (B+ \ A−), A− ∪ (B− \ A+)

〉
.

Thenegativeof A is−A =
〈
A−, A+

〉
.
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L EMMA 1. For any two signed sets A and B, we have(A ◦ B) = A∪ B.

Proof.

(A ◦ B) = A+ ∪ (B+ \ A−) ∪ A− ∪ (B− \ A+)

= A+ ∪ A− ∪ B+ ∪ B−

= A∪ B.

2

This operation is associative but not generally commutative. For a detailed study
of this operation, the reader is referred toBailey and Oliveira(1998, and in prepa-
ration)

2.6. Oriented matroids and cycles.Oriented matroids are a class of structures
that generalize many of the properties of families of vectors—particularly, those
properties coming from signs. There are a number of equivalent definitions de-
pending on the viewpoint one wishes to emphasize—seeBjörneret al.(1993). The
particular use we make of them is their finiteness and the fact that they capture all
of the pathways we are interested in finding, as we will show.

DEFINITION 23. An oriented matroidis a collectionV of signed subsets of a set
X, which is a subsetS (X) satisfying the following axioms:

(a) 〈∅,∅〉 ∈ V;
(b) if A ∈ V then−A ∈ V;
(c) if A andB are inV then so isA ◦ B;
(d) if A and B are inV ande ∈ A+ ∩ B− and f ∈ (A \ B) ∪ (B \ A) ∪ (A+ ∩

B+) ∪ (A− ∩ B−) then there is someC ∈ V such that

C+ ⊆ (A+ ∪ B+) \ e

C− ⊆ (A− ∪ B−) \ e

f ∈ C.

The reader is referred toBjörneret al. (1993) for a more detailed exposition of
the theory of oriented matroids.

DEFINITION 24. Let H = 〈V, E〉 be a hypergraph. Acyclein H is a sequence
v0,e0, . . . , vk,ek such that

(a) vi ∈ V andei ∈ E for all i ;
(b) if i < k then{vi , vi+1} ⊆ ei ;
(c) {v0, vk} ⊆ ek.
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DEFINITION 25. Let H = 〈V, E〉 be a directed hypergraph.

(a) A positively directed cyclein H is a sequencev0,e0, . . . , vk,ek such that

i. vi ∈ V andei ∈ E for all i ;
ii. if i < k thenei (vi ) = −1, ei (vi+1) = 1;

iii. ek(vk) = −1, ek(v0) = 1.

(b) A negatively directed cycleis the same but signs are reversed.
(c) A cycleor undirected cyclein H is a sequencev0,e0, . . . , vk,ek such that

i. vi ∈ V andei ∈ E for all i ;
ii. if i < k thenei (vi ) 6= 0, ei (vi+1) 6= 0;

iii. ek(vk) 6= 0, ek(v0) 6= 0.

DEFINITION 26. A tight cycle for any type of hypergraph is a cycle without re-
peated edges.

We note that a cycle has a natural orientation given by the sequence order. With
this in mind, we see that a positively directed cycle is one whose natural orientation
agrees with theH -orientation everywhere.

DEFINITION 27. Let H be a directed hypergraph. LetI be its incidence matrix.

(a) A nullvectorof H is a vectorv ∈ ‖E‖Q such that

Iv = 0.

(b) Thesigned supportof a vectorv ∈ nQ is

ssup(v) = 〈{i | v(i ) > 0} , {i | v(i ) < 0}〉 .

(c) A signed supportof H is a signed subsetS of ‖E‖ for which there is a nul-
lvectorv ∈‖E‖ Q such thatS= ssup(v).

(d) S(H ) is the set of signed supports ofH .

THEOREM 1. The set of signed supports of a directed hypergraph is an oriented
matroid.

Proof. Fix a directed hypergraphH = 〈V, E〉. We check each of the axioms in
turn. LetP be the set of all signed supports forH .

(a) 〈∅,∅〉 ∈ P since0 is always a nullvector.
(b) If V is the signed support forv then−V is the signed support for−v.



18 J. S. Oliveiraet al.

(c) Let X be the signed support ofx andY be the signed support ofy. We want to
find two rational numbersq andr such that ifz= qx+ r y then

zi > 0 iff xi > 0 or (yi > 0 and¬(xi < 0))

zi < 0 iff xi < 0 or (yi < 0 and¬(xi > 0)).

Thus, we want

qxi + r yi > 0 iff xi > 0 or (yi > 0 and¬(xi < 0)) (c.i)

qxi + r yi < 0 iff xi < 0 or (yi < 0 and¬(xi > 0)). (c.ii)

We will chooseq > 0 andr > 0. We note that ifxi = 0 thenzi andyi have
the same sign so both of these are satisfied.
If xi > 0, then we are using (c.i) so thatqxi +r yi > 0 and, therefore,qr > −

yi
xi

.
Note that ifyi > 0 this is automatically true forq > 0 andr > 0, so we need
this only for yi < 0.
If xi < 0, then we are using (c.ii) so thatqxi+r yi < 0 and, therefore,qr > −

yi
xi

.
Note that ifyi < 0 this is automatically true forq > 0 andr > 0, so we need
this only for yi > 0.
Putting all this together, we see that we need merely choose strictly positiveq
andr to satisfy

q

r
> max

{
−

yi

xi

∣∣∣∣ xi 6= 0 6= yi andxi yi < 0

}
.

This is easy to do as we are maximizing over a finite set of strictly positive
rational numbers.

(d) Let X be the signed support ofx andY be the signed support ofy. We want to
find two rational numbersq andr such that ifz= qx+ r y then

ze = 0

z f 6= 0

zi > 0→ xi > 0 or yi > 0

zi < 0→ xi < 0 or yi < 0.

The last two conditions are satisfied by choosingq > 0 andr > 0. The first
condition implies

q

r
= −

ye

xe
, (4)
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which is positive asye < 0 andxe > 0.
Notice that f is such that either exactly one ofx f or y f is nonzero, or the signs
of x f andy f are the same.
If we choose anyq > 0 andr > 0 satisfying (4), thenz f = qx f + r y f is
equal to zero iff bothx f = 0 = y f (which is impossible) orx f 6= 0 6= y f and
qx f = −r y f . As q > 0 andr > 0, this impliesx f andy f have different signs
which is also impossible. 2

REMARK 2.2. Thinking of a directed hypergraph as a Petri net, we see that this
theorem says that the set of signed supports associated with T-invariants forms an
oriented matroid. By dualizing, the same is true for the set of signed supports of
S-invariants.

DEFINITION 28. Let G = 〈V, E〉 be a digraph.

(a) If C = 〈v0,e0, . . . , vk,ek〉 is a cycle forG , define the functionsC, C+, C−

from E toN by

C(e) = the number of timese is onC

C+(e) = the number of timese is onC positively

C−(e) = the number of timese is onC negatively.

(b) If C = 〈v0,e0, . . . , vk,ek〉 is a cycle forG , define the signed set

S(C) =
〈{

ei

∣∣ C+(ei ) > C−(ei )
}
,
{
ei

∣∣ C+(ei ) < C−(ei )
}〉
.

ThusS+ is that set of edges inC with positive orientation, andS− is that set
of edges inC with negative orientation.

(c) O(G ) = {S(C) | C is a cycle ofG }.

It is well-known thatO(G ) is an oriented matroid. Furthermore, we have the
following relationship between the matroid of cycles and the matroid given by the
incidence matrix.

THEOREM 2. LetG be a digraph. Then

S(G ) = O(G ).

This theorem fails for directed hypergraphs, but fortunately we are able to show
that associated with any directed hypergraph there is a digraph with more edges
and exactly the same cycles. This gives us a way to investigate the cycle matroid
of our Petri net. Of course, the full matroid may be very big and so we only wish
to find theminimal elements.
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DEFINITION 29. Let O be an oriented matroid andA =
〈
A+, A−

〉
be inO. Then

A is minimal iff

(a) A 6= 〈∅,∅〉
(b) if A ≤ B thenA = B or B = 〈∅,∅〉.

This may seem the reverse of minimal, but the point is that minimal elements in
the cycle matroid are really as small as possible.

2.7. Remarks. We note that the Petri net model introduced here provides us with
an extensive set of combinatorial tools for deducing the qualitative control logic
of biochemical networks. This approach defines states in the system to be marked
places, that combinatorialists refer to asboxes; and the tokens, that are colored with
markings that symbolically represent concentrations of biomolecular species such
as metabolites, enzymes, and cofactors, etc., are calledcolored balls. The system-
atic nature of this modeling approach studies the circuit arrangements or partitions
of a biochemical network as functions of marked balls (biochemical species) being
arranged into marked places, subject to a set of process control rules defined by the
transition conditionals of the Petri net. The tokens are symbolic representations of
biomolecular concentrations.

Qualitative sets of inferences define the process control logic of a Petri net model
of biochemical reaction networks. In every biochemical reaction network, there
exist sets of reactions that define the conversion of biochemically reacting species.
The replacement and depletion of biochemical species is defined by a set of reac-
tions. The transport of sets of reacting species within a given network is directed
by time-ordered sets of operational inferences, the process control logic of the
systems’ reaction network. We want to identify the extremal (maximal and mini-
mal) sets of sub-circuit paths of a given network in terms of their exchange fluxes,
subject to the conservation of system fluxes that act as the balance laws for any
chemical reaction pathway. Not every sub-circuit will, in fact, be principal for the
regulation of specific staged productions of metabolic species. In a sequel, we will
demonstrate this by introducing the biochemical analog of Kirchhoff’s law. Some
sub-networks will be purely catalytic, and yet others will define maximal and min-
imal accumulations of metabolites and control pinch points which are analogous to
set points in a control system and are referred to as governors.

The boundedness property of the Petri net representation identifies which com-
binations of paths have intermediate maximum and minimum accumulations. This
is the case since we are enumerating multi-sets of molecular species into marked
place holders subject to reaction and conservation constraints. The arrangements
define a partitioning of kinetic reaction space that corresponds to the set of sub-
circuits that span the network. In a future paper, we will develop oriented matroid
programs from our oriented matroid of sub-circuit paths to identify minima, max-
ima, and cyclic metabolic accumulants. We will also, by this method, be able to
identify ‘pinch points’ in the biochemical network.
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Every linear system of chemical rate equations is subject to the conservation
laws of system flux. Every linear system of chemically balanced equations can be
written as anm× n conservation matrixS, wherem corresponds to the number
of reacting species in the chemical system andn corresponds to the number of
reactions that are taking place within the chemical system.

For every system of biochemical reactions, the set of reactions that defines the
system is referred to as a set of fluxes. In deriving a systems analysis model, it is
necessary to define a boundary around the set of reactions. This boundary imposes
a set of bounding conditions for physically discretizing the system of chemical
equations and, as such, defines two classes of system fluxes: the internal set of
system fluxes are defined by the set of internal sources and sinks that correspond
to our sets of marked places in the Petri net model; and the external fluxes indicate
the transport of the biochemical species, i.e., metabolites, that can exist outside of
the bounded system as potential input sources to a new sub-system of biochemical
reaction equations. Note that each of the external fluxes has a positive value.

If we construct a Petri net model for the system of reactions under consideration,
we see that the incidence matrix of the net is exactly this conservation matrix. For
every conservation matrixS, there exists a stoichiometric column matrixv, that
defines the null space or kernel (ker(S)) of S. If S is anm× n matrix, the null
space ofSconsists of all vectorsv in realn-dimensional space,Qn, such that

S · v = 0. (5)

The dimension of the null space ofS depends on the rank ofS. The rank ofS
is defined as the number of free variables that exist in the system of equations that
defines the matrixS.

If equation (5) defines a linear algebraic balance equation that represents the stoi-
chiometric conservation of system flux in the linear system of biochemical reaction
equations, then the matrix equation (5) is solved when we obtain the linear com-
bination of linearly independent basis vectorsp1, . . . , pn that spans the equational
null space,null(S) or ker(S), of the conservation matrixS.

When the dimension of the null space is small, it is a simple exercise to compute
the solution to equation (5). If the dimensionality of the system of linear conser-
vation equations and hence the null space of equation (5) is large, then we have to
use computational methods to calculate a basis for the null space. The computa-
tional hardness associated with computing all of the linearly independent sets of
admissible solutions that spannull(S) grows by the dimension ofS.

The null spaces of equation (5) contain all of the solutions that satisfy the balance
equations defined by (5). The principal problem is to be able to optimally generate
the entire null space and then search for all of the biochemically meaningful basis
sets that span the null space as linear combinations of sub-circuit paths. As indi-
cated above, this null space corresponds to the space of cycles of some graph, and
so we take biochemically meaningful to mean a positive cycle or path. In signed
sets terms, this meansC− = ∅.
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Ideally, we want all minimal positive cycles. Often, in practice, we may be
reduced to a subset of this. There are several ways to find these. The first two
approaches look for a basis for the null space.

The first approach requires a reduction in the number of unknown fluxes that
define the system’s conservation matrixS. This approach leads to an exactly deter-
mined system of equations whose solution can be directly obtained as the dimen-
sion of the null is iteratively reduced to a subspace of zero-dimensional subspace
that defines a point inQn. This approach can be found inSmith and Missen(1982),
Papoutsakis and Meyer(1985), Ponset al. (1996), andHenriksenet al. (1996).

The second approach generates extremal subset solutions by the direct applica-
tion of a linear programming method. This method uses linear objective functions
to generate constrained polyhedral bounds on the null space, and then generates a
recursive search for the zero-dimensional subspace that satisfies the linear objective
function of the search algorithm. The search for optimal linearly independent basis
sets, that span the null space as sub-circuit paths, terminates with an optimal basis
set that satisfies the conditions defined by a linear extremal objectifying function.

The method used in this paper is based on a combinatorial geometric analysis
of cycles in graphs. A variation on this approach has been developed bySchilling
and Palsson(1998, 1999) andSchilling et al. (1999). Ours is a variation of the
first approach in that it first finds a suitable graph, generates the cycle matroid, and
translates back to find positive cycles in the Petri net. In a sequel, we will show
that this oriented matroid is used to define generalization of linear programming
called an oriented matroid program (and its dual).

The computational construction of the null space of interest requires that a de-
cision procedure exist that generates a set of signed vectors, those corresponding
to the signed sets of tuples that define an incidence matrixS that characterizes the
state representation of the system of equations, that in turn define the biochemical
reaction system. The algorithm must efficiently generate a minimum number of
linearly independent signed vectors that defines a candidate basis set as a signed
sub-circuit. The optimal search of ann-set of points inQn space, that satisfies the
dimensional requirements that the number of basis vectors necessary to define the
basis set is equal to the dimensions ofnull(S) ⊆ Qn, is provably polynomial. This
is not true for finding an optimal set of basis vectors overR

n.

The S-invariants can also be used to identify the existence of all non-reachable
sub-circuits in the reaction network. We note that the reachability of one marked
place to another marked place in a Petri net is subject to the condition that all place
markings are reachable when the conservation of fluxes is defined by the network
S-invariants.

The T-invariants of the network determine the set of conditional transitions that
have to be evaluated to identify the set of sub-circuits that span the entire reaction
network as cycles. The T-invariants are defined by an equation that is identified
with equation (5).



Identifying Circuits for Cell Signaling 23

Figure 1. Schematic of a metabolic pathway,Schilling and Palsson(1998).

3. ANALYSIS OF BIOCHEMICAL REACTION NETWORK /M ETABOLIC

PATHWAY M ODELS

The generation, storage and depletion of biomolecular species that define the
discrete compartmentalized components in a biochemical reaction network are the
corresponding colored balls or tokens that are arranged into marked boxes or places
of our Petri net. The pathways that define the ‘trajectories’ of reacting species in a
biochemical reaction network correspond to cycles or sub-network circuits of sets
of reacting metabolites.

3.1. Model of a metabolic pathway.We now construct a combinatorial repre-
sentation of the simple model metabolic network given bySchilling and Palsson
(1998) as shown in Fig.1. In their example, it is assumed that the system flow is
initiated by a sufficient amount of metaboliteA, as if there were an input intoA.

A combinatorial Petri net of their network, presented in Fig.2, can be shown to be
a canonical generalization that serves as a representation of a biochemical reaction
network composed of discrete sets of pathway sub-circuits. Their methodology
produces a basis of the null space which implicitly defines the set of minimal cy-
cles. One of the differences between our approach and other approaches is that the
matroid explicitly produces all minimal cycles.

A metabolic pathway can be defined by a system of linear reaction equations that
contains a set of metabolites. This set of metabolites undergoes sets of reactions
that are equivalent to a combinatorial rearrangement of colored balls in marked
boxes. A set of arrows indicates the direction of metabolic reactions and products.
Together, they define a directed graphical network model of the system of coupled
chemical equations.

We construct a partition of the network ensemble and examine the fluxes, i.e.,
reactions of species, coming into and going out of each block of sub-circuits. The
disjoint union of these blocks of sub-circuits defines an equivalence class that de-
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Figure 2. Petri net of the metabolic pathway.

fines the network partition. The biochemical reactions are referred to as internal
fluxes defined by a set of vectors{v1, v2, . . . , vn} such thatvn is thenth internal ex-
change flux. The fluxes that cross the system boundary of the network are precisely
those metabolites that undergo transport into and out of the chemical reaction sys-
tem. The sinks of the system are referred to as exchange fluxes defined by a set of
vectors{b1,b2, . . . ,bm} such that thebm is themth total exchange flux. Note that
each exchange flux has a positive value precisely when the metabolites are being
transported out of the system.

The digraph of the reaction is transformed into a bounded biochemical reaction
network matrix with both internal and exchange metabolic fluxes as follows: for
each metabolite in the set of metabolites, define a stoichiometric conservation ma-
trix S, as presented in Table2a. From Fig.1, we obtain a set of five metabolites
{A, B,C, D, E} and their corresponding 11 fluxes, such that there are four ex-
change fluxes{b1,b2,b3,b4} and seven internal fluxes{v1, v2, v3, v4, v5, v6, v7};
the dimensionality of the system corresponds to a 5× 11 matrix. There exists a re-
versible reaction between metabolitesB andD, known as a two-cycle. Recall that
a two-cycle is a reversible reaction as presented in Table1. All other metabolites
contain either a source or a sink that defines the set of four exchange fluxes.

We next determine the dimension of the system’s null space. Since the rank of the
system is five, it follows that the dimension of the null space for the system defined
is six. This fact follows from a well known theorem of linear algebra that says that
dim(S) = null(S) + rank(S). It is both necessary and sufficient to describe the
ker Sof equation (5) via a set of linearly independent vector equations, such that
this set of equations is defined in terms of the free parameter variables obtained
from the biochemical balance equations that define this space, cf.Schilling and
Palsson(1998). To accomplish this task, Schilling and Palsson use the following
construction.

Let the set of metabolites{A, B,C, D, E} be defined by the following balance



Identifying Circuits for Cell Signaling 25

equations:

A : −v1− b1 = 0
B : v1+ v4− v2− v3 = 0
C : v2− v5− v6− b2 = 0
D : v3+ v5− v4− v7− b3 = 0
E : v6+ v7− b4 = 0

From equation (5), we obtain the stoichiometric matrix,S, presented in Table2a.
In this form, the stoichiometric matrix gives rise to very few cycles—in fact, only
the two-cycle{B, D} and the three-cycleD

t4
→ B

t2
→ C

t5
→ D arise from positive

vectors.
However, in investigating the chemical kinetics of the reaction pathways, we

often assume that all or some of the reactions are potentially reversible or that some
reactant is present in such quantities that we may assume it is always available. In
Schilling and Palsson(1998), the authors made the latter assumption for reactant
A, which modifies the stoichiometric matrix toS′, presented in Table2b.

The basis produced inSchilling and Palsson(1998) contains the two-cycle{B, D}
and the following six paths, based upon the assumption of sufficient metaboliteA
as a source input to stateA—denoted asc1:

c1
→ A

t1
→ B

t2
→ C

b2
→ D

t4
→ B

t2
→ C

t5
→ D

c1
→ A

t1
→ B

t2
→ C

t6
→ E

b4
→

c1
→ A

t1
→ B

t3
→ D

b3
→

c1
→ A

t1
→ B

t2
→ C

t5
→ D

b3
→

c1
→ A

t1
→ B

t3
→ D

t7
→ E

b4
→

Although the matroid, and hence the set of all cycles is implicit in this basis, even
determining the number of minimal cycles from the basis is a nontrivial problem.
In this example our analysis produced one additional minimal cycle.

3.2. The augmented metabolic pathway.As our second example, we consider
an augmented combinatorial representation of the model metabolic network de-
fined bySchilling and Palsson(1998). The underlying assumption regarding the
chemical kinetics of the reaction pathways is that they are all hypothetically re-
versible reactions. Therefore, the backward pathways have been added, regardless
of whether or not they are readily attainable (as would be indicated via weights).
The internal flux vectorvn of the original reaction model corresponds to the flux
through transitiont1 , for n = 1, . . . ,7. Note that transitiontm for m= 8, . . . ,12
has been added to complete the Petri net in our augmented example. The aug-
mented reaction model and its Petri net is given in Fig.3. The solid directed lines
indicate Schilling and Palsson’s internal fluxes; the dashed directed lines indicate
the balancing backward pathways, which are biochemically potentially feasible.

Note that the metabolites{A,C, D, E} each depict either a source or a sink in-
dicating a set of four exchange fluxes. The sources of the system are referred to as
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Figure 3. The augmented reversible Schilling and Palsson network example of signaling
pathways.

augmented exchange fluxes defined by a set of vectors{c1, c2, . . . , cm} such that
cm is themth total augmented exchange flux. Note that each augmented exchange
flux has a negative value precisely when the metabolites are being transported into
the system.

Next note that the digraph presented is transformed into a bounded biochemical
reaction network matrix with both internal and exchange metabolic fluxes as shown
in Table2c.

For computational efficiency, we added a single state to represent the space exter-
nal to this network fragment, and assumed that all of the exchange fluxes connect
to the external state. Because we have introduced this state, the cycles that contain
the external state correspond to paths that go completely through the network.

The matrix for the original model describing the five metabolite states and seven
internal fluxes is 5× 7. Our augmented Petri net matrix is balanced, with rows
summing to zero, at 5× 12. Inclusion of the external fluxes results in matrix
dimensions of 5× 11 and 5× 20, respectively. We next determine the dimension
of the systems null space. Since the rank of the system is five, it follows that the
dimension of the null space for the system defined is six.

We identified 50 cycles in the augmented model, 44 of which were multi-cycles
and six of which were trivial two-cycles.

The six two-cycles are:{A, B}, {B,D}, {B,C}, {C, D}, {C, E} and{D, E}. The
single two-cycle identified by Schilling and Palsson is highlighted in bold.

The 44 minimal positive cycles in the space we obtain are provided in Fig.4. The
seven cycles from the first example are, of course, included, listed first.

T-invariants identify the cyclic firing sequences of sub-circuit metabolic pro-
cesses. These cycles are identified with continuous sets of operations that define
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the stability of the system. Here, we identify the minimal spanning set of cyclic
circuit paths.

Our hypergraph approach identifies all possible positive paths. Note that all min-
imal positive paths pass through either stateC and/orD, suggesting that they may
be ‘pinch points’.

3.3. A nonsimple example. In order to identify the cycle decomposition of a
general network, it is necessary that the Petri net model be a graph. Accordingly,
the hyper-digraph representation of the Petri net must be augmented in order to
satisfy the stronger condition of being a graph. There is an easy repair to ob-
tain a faithful graph representation of the hyper-digraph, as will be demonstrated
presently.

In many practical examples, one of the most obvious difficulties which will be
encountered is dealing with multiple paths to and/or from the transitions or states.
Note that the molecular reaction presented in Table1 is a simple two-cycle whereas
the complex formation is a nonsimple example. As can be seen in the Petri net
representation of a complex formation, transitiont1 contains the rule combining
the flow of information from states

�� ��p1 and
�� ��p2 to
�� ��p3 ; similarly, transition t2

contains the rule splitting the flow of information from state
�� ��p3 into states
�� ��p1 and�� ��p2 . In our present representation, in which we have assumed that all transitions

are simply unary, the regulation cannot be specified.
The issue is that the Petri net, or hypergraph, representation of a nonsimple

multiple-path biochemical reaction is not a graph. Therefore, a graph needs to be
constructed in order to obtain all minimal paths. We now look at one such example
involving nonsimple reactions, the enzyme reaction presented in Table3a.

The incidence matrix of the Petri net representation yields an associated matroid
with only six minimal elements corresponding to the three two-cycles:{t1, t2},
{t3, t4} and{t5, t6}. Actually, the first and last of these each give rise to two distinct
cycles. We are also missing two three-cycles. It is clear that this approach does not
capture all of the information.

The readily constructed graph for the enzyme reaction is presented in Fig.5,
with its incidence matrix as presented in Table3b. We have introduced a slight
change in notation from that of the states

�� ��p to the vertices
�� ��v and from transitions

t to edgese such that
�� ��p4 → t3 →
�� ��p5 is denoted bye10. In this way, we

may distinguish between multiple paths passing through a single transition. For
example, the communication of information through transitiont1 is now split

such thatp4
t1
→ p3 becomese2 and p4

t1
→ p1 becomese7.

The complete list of correspondences between transitions and and digraph edges
is provided in Table3b.
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Figure 4. The augmented pathways.

Figure 5. The enzyme reaction digraph.
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Figure 6. The pathways of the augmented enzyme reaction.

The paths we found are presented in Fig.6.

4. CONCLUSIONS

We selected as a generic example of the linear algebra approach one studied
by Schilling and Palsson(1998). The biochemically significant path-circuit infor-
mation is obtained from a vector space point of view. The biochemical reaction
network defined by Fig.1 is characterized by the matrix representation given in
Table2a. The flux balance matrixS has as its first seven entries a vectorvi that
corresponds to the internal system fluxes, and a set of four vectorsbj that cor-
respond to the external system fluxes. The incidence matrixS is 5× 11. This
indicates that the space of all possible basis vectors that must be searched through
is 11-dimensional. This follows from a theorem of linear algebra that states that the
rank of a matrix plus the nullity of the matrix is equal to the dimension of the vector
space that matrix spans as a subspace. Without a significant set of objectifying bio-
chemical constraints or knowinga priori which basis transformations are required
to obtain the desired sets of optimal sub-circuit paths, searching ann-dimensional
space (forn ≥ 3) for the correct set of basis vectors that produces solutions to the
flux balance matrix equation, that in turn generates the flux conserved sub-circuits
that span the network overRn, is worse than NP-complete, cf.Garey and Johnson
(1979).

Use of linear programming leads to a choice of constraints driven by heuris-
tic considerations. This fact leads to a decision procedure for setting constraints
which is itself NP-complete. In other words, as the dimension of the matrix grows
arbitrarily large, so does the computational hardness associated with obtaining
the necessary and sufficient basis transformation required to obtain all of the bi-
ologically feasible optimal sub-circuit paths. This fact, together with the NP-
completeness of finding the basis vectors that optimally span the null space, gen-
erates an NP-complexity for finding spanning combinations of biochemically fea-
sible sub-circuits as a function of identifying suitable sets of positive basis vectors.
Worst case, it is a(N P)N P PSPACE hard decision problem. If, on the other hand,
we restrict ourselves to searching for cycles in a hyper-digraph representation of
the biochemical network, then we can reduce the PSPACE complexity that the lin-
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ear algebra approach introduces into the search problem. Our decision problem is
a bounded satisfiability problem (SAT), which is just NP complete.

Identifying the theoretically feasible pathways is accomplished by inspecting the
components of the basis vectors that trace out the sub-circuit pathways. The com-
ponents of each vector describe the relative flux distribution of each of the reactions
in a given network pathway. In fact, only those vector components that are posi-
tive are wanted, since any negative vector component points to the existence of a
biochemically impossible pathway.

S- and T-invariants of our Petri net representations of cell signaling networks
are the first of many algebraic-combinatorial invariants of multi-set arrangements
of marked balls placed into the holding boxes called reaction states. As such, the
identification of the set of S- and T-invariants in this combinatorial model corre-
sponds to a set of chemical kinetic system conservation laws, e.g., system fluxes.
This identification yields a set of fixed points for a specific path algebra model
over which path optimizations, cast in the framework of oriented matroids, are
well-defined by a set of objectifying functions. The set of S- and T- fixed-point
invariants and their supports are used to fix the objective in the optimization met-
rics over the given path algebra. In subsequent papers, we will use these results
to obtain examples of optimal kinetic paths corresponding to optimally weighted
edge sets in the multi-digraph representation of the signaling pathway.

Notably, the success of the linear algebraic approach depends largely on finding
the necessary and sufficient sets of basis transformations that result in an iden-
tification of sub-circuit paths whose flow is indicated by sets of exchange fluxes
where the negative values represent reactants and positive values represent prod-
ucts in stoichiometric ratios given by their respective numerical values. Given exact
stoichiometry, the Petri net approach can easily incorporate this additional set of
constraints. Every flux distribution in a given network is easily represented as a
linear combination sub-circuit pathway traced by some new set of basis vectors. If
these basis vectors represent specific metabolic functions, either experimentally or
computationally determined, then one can obtain new metabolic sub-circuit path-
ways as a function of linear combinations of functional metabolic sub-circuit paths.
These issues will be explored in a sequel to this paper.

To enhance our method, we can consider Petri nets with weighted edges, where
the weights come from a path algebra. This allows different optimality criteria to
be applied in the search for paths and cycles as discussed byBailey and Oliveira
(1998). So far, the use of oriented matroids has been quite limited. However, they
are a powerful tool, giving rise to a number of significantly different viewpoints
on the space of cycles. They also allow the use of matroid programming search
algorithms similar to those used in linear programming. One possible application
of our Petri net hyper-digraph model technique is the anlaysis of genetic networks
obtained from gene expression array data. In later work, we will consider these
applications and extensions.
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