
Advances in Applied Mathematics 29 (2002) 311–327

www.academicpress.com

Absolute and uniform convergence of alternate
forms of the prolate spheroidal radial wave

functions

Janet B. Jones-Oliveiraa,∗ and Hans R. Fischerb

a Environmental Molecular Sciences Laboratory, Theory, Modeling and Simulation Group, Pacific
Northwest National Laboratories, Richland, WA, USA

b Department of Mathematics, Emeritus, University of Massachusetts, Amherst, MA, USA

Abstract

A new orthonormal basis set representation of the prolate spheroidal radial and angular
wave functions is presented. The embedded series solutions to a fully-coupled fluid-solid
interaction continuum physics problem is defined by product sets of Legendre polynomials
and modified spherical Bessel functions of the first and third kinds. We prove that the
embedded series solutions analytically converge absolutely and uniformly to the exact
solutions of the system of coupled continuum equations. The satisfaction of the bilinear
concomitant and its utility in establishing the convergence proofs is demonstrated.
 2002 Elsevier Science (USA). All rights reserved.

1. Background

A transient solution was presented by Jones-Oliveira [4,6] which models the
fluid-solid interaction of a thin elastic prolate spheroidal shell loaded end-on by
a nonconservative acoustic shock wave. Solutions to the Lagrangian equations of
motion were provided for the normal and tangential shell displacement fields, as
well as for the incident, scattered and radiated fluid pressure fields. The explicit
analytic solutions were claimed to converge absolutely and uniformly to the exact
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solution of the actual coupled differential equations over the entire temporal and
spatial domains both in the structure and in the fluid. However, proofs were
promised which are now offered in completion of the work.

1.1. Problem description

The problem addressed was to solve the fluid-solid interaction problem for
the prolate spheroidal geometry. A neutrally buoyant prolate spheroidal shell
structure is assumed to be submerged in an acoustic medium that is initially at rest
and whose far field is assumed to be well-defined and to remain at rest. The thin
elastic shell is loaded end-on by an incident pressure waveΠ inc, which reduces
the model complexity due to the axial symmetry of the physics of the problem.
The incident wave impinges on the shell as if it were a rigid body. This incoming
wave is modified by the shell, which acts as an obstacle in the path of the incident
wave, producing an outward scattered or reflected waveΠsca. Once the incident
wave has struck the deformable shell, radiated or interactive vibratory wavesΠ rad

are initiated. The shell and the fluid behaviors interact and are inextricably linked
by the kinematic boundary conditions at the fluid-solid interface.

To investigate completely this transient three-dimensional continuum mechan-
ics problem, it was necessary to obtain simultaneous solutions for the incident
pressure loading, the transient wave scattering and the dynamic and radiation
problems associated with the shell and the fluid. The physical domain addressed
relates to both the transient response of the shell structure and to the propagation
of acoustic energy into/from the surrounding medium. This type of interactive
transient problem is modeled as a mixed initial-boundary value problem which is
described by coupled inhomogeneous partial differential equations.

The analysis paralleled that of its spherical analog, as presented in Jones-
Oliveira et al. [5,7], which facilitated the development and verification of the
solution by way of limiting arguments, cf. Jones-Oliveira [6, Section 2.4.1.2] to
reduce the prolate spheroidal expressions to their analogous spherical expressions.
The prolate spheroidal shell was modeled using the prolate spheroidal coordinate
system such that the shell equations of motion are represented by the vector
prolate spheroidal wave equation and the fluid is modeled via the scalar prolate
spheroidal wave equation. The prolate spheroidal angular and radial wave
functions were used to represent the shell displacement and fluid pressure
fields. The prolate spheroidal functions were re-expressed in terms of equivalent
representations that are infinite series expansions using Legendre polynomials
and modified spherical Bessel functions of the first and third kinds. These
novel representations, in addition to having other attributes, further facilitate
simplification to the known spherical case.
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1.2. Prolate spheroidal functions

The prolate spheroidal coordinate system(φ, η, ξ) is used whereφ is
the axis angle,η is the cosine of the polar angle, andξ is the coordinate
along the axis of rotation. An admissible transformation from the Cartesian
coordinate system(x, y, z) to the right-handed prolate spheroidal coordinate
system(φ, η, ξ) is given by the following:x = f

√
(ξ2 − 1)(1− η2)cosφ, y =

f
√
(ξ2 − 1)(1− η2)sinφ, andz = f ξη.

Bear in mind that both the prolate spheroidal angular and radial functions solve
the same ordinary differential equations over different ranges of the variable, cf.
Jones-Oliveira [6, formulas 2.5.2.12a and b], Meixner et al. [8, Chapter 3], and
Flammer [1, formulas 2.2.6 and 2.2.7].

The prolate spheroidal angular functions of the first kind may be found in
Flammer [1, formula 3.1.3a] or Jones-Oliveira [6, formula 2.6.5.4]. Due to the
axial symmetry already mentioned and the invariance it implies, the orderm

reduces to zero and the expansions of the prolate spheroidal angular functions
become expansions in terms of Legendre polynomials:

Sk(c, η) =
( ∞∑

n=0,1

)∗
dk
n(c)Pn(η) (1)

in Flammer’s notation, cf. Flammer [1]; whereη is the cosine of the polar angle
andc = 1

2kd , wherek is the wave number andd is the is the interfocal distance.
Note that the asterisk associated with the summation sign indicates a parity rule,
which states that the summation is over only even values ofn whenk is even,
and over only odd values ofn whenk is odd. Note here that we use the following
simplification of notation and setdk

n(c)= an.
As per Flammer [1, formula 5.1.5], the prolate spheroidal radial functions

(for the axisymmetric case) may be expressed in terms of the prolate spheroidal
angular functions (for the axisymmetric case) as follows: Assume that

Rn(c, ξ) =
b∫

a

K(η, ξ)Sn(c, η)dη

whereK(η, ξ) is a kernel satisfying the condition

[(
1− η2)Sn

∂K

∂η
− (

1− η2)K ∂Sn

∂η

]η=b

η=a

= 0.
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Let K(η, ξ) = C eicηξ = C e−sηξ where C is an arbitrary constant ands
is the Laplace variable. This kernel will guarantee convergence provided that
�(sξ) > 0. Then

Rn

(−s2, ξ
)=

b∫
a

C e−sξηSn

(−s2, η
)
dη

is a solution of the separated prolate spheroidal wave equation governingξ , i.e.
the radial differential equation, cf. Jones-Oliveira [6, formula 2.5.2.12b], provided
that the bilinear concomitant given above vanishes at both limitsa andb.

2. Convergence proofs

We prove that two linearly independent prolate spheroidal wave functions,
which are solutions to the acoustic wave equation, may be expanded in terms of
the modified spherical Bessel functions of the first and third kinds, respectively.
It must be shown that the integration and summation may be interchanged within
the integral transforms with kernels e−st , wheres is positive, over two different
intervals of integration, where in one case the integral is also improper. A final
technicality in the construction of these proofs is to show that the integral
transform is differentiable as a function ofs.

2.1. Construction of the requisite identity

Let (an) be a sequence of real numbers such that:

n

∣∣∣∣an+1

an

∣∣∣∣→ 0 asn → ∞. (2)

Then,
∑

anz
n is an entire function ofz, z ∈ C. The necessity of the condition on

an defined by (2) is demonstrated as follows.
In our problem set-up, thean are the coefficients in the expansions of the

spheroidal wave functions given in terms of Legendre polynomials. According
to Flammer [1], (1) admits the condition that

n

∣∣∣an+1

an

∣∣∣∼ c

n2
, c > 0 a constant.

For this case, “∼” defines asymptotic proportionality: There exists a constant
d > 0, such that

|an+1/an|
c
n2

→ d asn → ∞.

Next, observe that
n|an+1/an|

c
n

→ d,
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which implies that

n

∣∣∣an+1

an

∣∣∣→ 0.

Remark 1. The sequence presented by (2) indicates thatan tends to zero “faster
than 1

n! .” We will revisit this detail below as an auxiliary argument. Note that (2)
is not satisfied, e.g., by the exponential series; but, ifan = 1

(n!)α with α > 1, then
(2) is satisfied. This fact demonstrates that there are non-trivial sequences that
satisfy (2).

The main result, given assumption (2), is realized by the identity
∞∫

1

e−st
(∑

anPn(t)
)

dt =
∑

an

∞∫
a

e−stPn(t)dt, (3)

wherePn is thenth Legendre polynomial. Next, observe that fort � 1,Pn(t) > 0
sincePn(1) = 1 and the zeroes ofPn lie in (−1,1).

To obtain the main result, it is sufficient to majorize e−st
∑ |an|Pn(t) by an

integrable positive function. To this end, we apply the identity

Pn(t) = 1

π

π∫
0

(
t +

√
t2 − 1cosθ

)n dθ, (4)

that is commonly known as the first Laplace integral.
For t � 1, (4) yields a crude estimate forPn(t): Pn(t) � (2t)n. We now use∑ |an|(2t)n to majorize the polynomial. Observe that this estimate shows that∑
anPn(t) is absolutely summable over[1,∞) and uniformly summable on

intervals[1, a]. Therefore, the sum is a continuous function oft .
With these facts, we now consider the following observations: Setbn =

22n|an|, so that
∑ |an|(2t)n =∑

bn(t/2)n. Since

bn+1

bn
= 4

∣∣∣an+1

an

∣∣∣,
we have that

(n+ 1)
bn+1

bn
→ 0,

which follows from (2). In particular, there is a least natural numbern1, uniquely
determined by the sequence(an), such that

(n+ 1)
bn+1

bn
< 1, for all n � n1,

i.e.,

bn+1 <
bn

n+ 1
, n � n1.
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Next, setb = n1!bn1, such thatbn1 = b
n1! . An easy argument then implies that

bn <
b

n! for n � n1. (5)

Therefore,
∞∑
n1

|an|(2t)n =
∞∑
n1

bn

(
t

2

)n

< be
t
2 .

On the other hand, the sum of the firstn1 terms is a polynomial int and,
consequently,

e− t
2

n1−1∑
0

(· · ·) → 0 ast → ∞.

In particular, this function is bounded by someM on [1,∞):

e− t
2

n1−1∑
0

(· · ·) <M.

Combining the two inequalities yields

e−t
∑

|an|(2t)n � (M + b)e− t
2 . (6)

This now, in turn, shows that the left-hand side of the inequality is integrable over
[1,∞). The proof of (3) follows from the above argument.

Remark 2. Extensions to complex variables and differentiability of complex
functions are given by the following two conditions:

(a) Let 0< ε < 1
2. Then

e−(1−ε)t
∑

(· · ·) < (M + b)e−( 1
2−ε)t .

This shows that the left-hand side of (3) converges absolutely on[1,∞) for
s > 1

2. Therefore, the identity holds uniformly in all such reals, and thus also
for complexs with �(s) > 1

2.
(b) Now, for anyk � 1, tk e−t/2 → 0 ast → ∞, and we observe that for such

a k, the integral
∞∫
a

tk e−st
(∑

anPn(t)
)

dt

converges in the same manner as was just established for the case where
k = 0. Up to a factor(−1)k for integralk, these integrals are the successive
derivatives with respect tos of the left-hand side of (3). From this fact,
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we establish that this left-hand side of the strict inequality is indefinitely
differentiable ins, s ∈ (1

2,∞). It is, in fact, holomorphic in the half-plane
�(s) > 1

2, cf. the literature on Laplace transforms such as Gradshteyn and
Ryzhik [2] and also below.

2.2. Convergence of the requisite identity and reversibility of summation and
integration

We next provide a direct proof of the required convergence of the right-hand
side of (3), by using the bounded estimate ofPn(t):

∑
|an|

∞∫
1

e−st (2t)n dt

is uniformly summable for everys � 1. Factoring out the powers of 2, we obtain
the identity

∑
cn

∞∫
1

e−st (t)n dt, cn = 2n|an|.

It follows that

(n+ 1)
cn+1

cn
→ 0 asn → ∞.

By settingu = t − 1, i.e.,t = u + 1, we now obtain
∞∫

1

e−st (t)n dt = e−s

∞∫
0

e−su(u + 1)n du.

The integral on the right-hand side is a Laplace transform and, as such, it is trivial
to compute:

∞∫
0

e−su(u + 1)n du =
∑(

n

k

)
k!

sk+1 .

For s � 1,

∑(
n

k

)
k!

sk+1 �
∑(

n

k

)
k! = n!

n∑
0

(m!)−1 < n!e.

The constant e does not effect the series convergence. We now claim that∑
cnn! < ∞. This follows immediately from the ratio test, and so it also follows

that

(n+ 1)
cn+1

cn
→ 0.
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The conclusion, which follows from above, is that the formal power series

∑
an

∞∫
1

e−stPn(t)dt

is both absolutely and uniformly summable fors � 1.
We next use these observations to obtain a simple expansion of the right-hand

side

F(s) =
∑

an

∞∫
1

e−stPn(t)dt

of (3) in powers of1
s
. The absolute and uniform convergence of (3), fors � 1,

now follows.
It is known from tables of integrals and Laplace transforms that

∞∫
1

e−stPn(t)dt = e−s

s
gn(s),

wheregn(s) is the “Bessel polynomial” given by

gn(s) =
∑
k

(n+ k)!
k!(n− k)!

1

(2s)k
, (7)

which equalsKn+1/2(s) up to a factor independent ofn. We next introduce the
variablez = 1

s
, and set

hn(z) =
∑
k

(n + k)!
k!(n− k)!

( z
2

)k
. (8)

The above result implies that
∑

anhn(z) is absolutely and uniformly summable
in |z| � 1.

Setf (z) =∑
anhn(z). This function is holomorphic in the neighborhood of

the unit disc|z| � 1 by classical theorems established in the theory of complex
variables.

Remark 3. We are simply dealing with an instance of “normal convergence,”
also known as “continuous convergence” or “local uniform convergence.” In
the present context, this is just the “co-topology” or the topology of uniform
convergence on compact sets.

Set

f (z) =
∑

Amzm,
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whereAm is themth Taylor coefficient off at z = 0: Am = ( 1
m! )f

(m)(0). The
radius of convergence of the series isR > 1 sincef (z) is holomorphic on the
boundary|z| = 1 of the unit disc. The successive derivativesf (m)(0) are given by
the Cauchy formulas; thus,

Am = 1

2π i

∫
|z|=1

∑
anhn(z)

zm+1
dz. (9)

Since the convergence of the series is uniform on the unit circle, summation
and integration may be interchanged to obtain:

Am = 1

2π i

∑
an

∫
|z|=1

hn(z)

zm+1
dz. (10)

There now remains the computation of the integrals and, by the construction
of hn, this is reduced to simple integrals of the form

∫
|z|=1

zk

zm+1 dz =
∫

|z|=1

dz

zm−k+1 .

Observe that such an integral is 0 unlessm− k + 1 = 1, i.e.k = m, in which case
it equals 2π i. This fact yields the following formulas:∫

|z|=1

hn(z)

zm+1 dz = 2π i
1

2m

(n +m)!
m!(n −m)!

for m � n, and the integral is 0 forn < m. Substitution this identity into (10)
yields the following formula for the coefficientsAm:

Am = 1

2m

∑
n�m

an
(n+ m)!

m!(n− m)! . (11)

Note that the absolute convergence of this series can be verified directly by the
ratio test.

Combining all the preceding results demonstrates that

F(s) =
∞∑

m=0

( ∑
n�m

an
(n + m)!

m!(n − m)!
1

(2s)m

)
.

The convergence of the series expansion of the right-hand side is absolute and
uniform for s � 1.
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2.3. Bilinear concomitant

We now turn to the remaining issue of the “bilinear concomitant.” We need to
show that[(

t2 − 1
) ∂
∂t

e−stf (t) − (
t2 − 1

)
e−stf ′(t)

]∞

1
= 0, (12)

where[· · ·]∞1 means, of course,

lim
b→∞[· · ·]b1,

and the notations used here explicitly correspond to those used in the preceding
subsections.

For t = 1, both terms of (12) are zero because of the factort2 − 1; therefore,
there only remains the behavior oft ast → ∞: We have to argue that the limit at
∞ also is zero, e.g. that both of the terms inside[· · ·] tend to zero ast → ∞. This
is shown by the following:

By the crude estimates made in Section 2.1, let e−stf (t) → 0 for s > 1
2. The

argument given there easily adjusts to also show that, e.g., e−st t2f (t) → 0 as
t → ∞. This now leaves the behavior of(t2 − 1)f ′(t) for large values oft :

Recall that fort � 1, f (t) =∑
anPn(t), where the coefficientsan satisfy the

condition

n

∣∣∣∣an+1

an

∣∣∣∣→ 0 asn → ∞,

as stated by (2) of Section 2.1. We first show that fort > 1,
∑

anP
′(t) converges

absolutely, and that the convergence is uniform on[1 + ε,∞) for everyε > 0.
This demonstrates that fort > 1,f ′(t) =∑

anP
′(t).

Now, P ′(t) = (
√
t2 − 1)−1P 1

n (t) and it suffices to establish that
∑

anP
1
n (t) is

absolutely summable. But,

P 1
n (t) = n + 1

π

π∫
0

(
t +

√
t2 − 1cosθ

)n cosθ dθ,

which is known as the second Laplace integral, cf. Whittaker and Watson [9,
Section 15.61]. Next, use the same crude estimate used earlier to obtain|P 1

n (t)| �
(n + 1)(2t)n, for t � 1. This fact implies the summability of

∑ |an||P 1
n (t)| for

t � 1. Moreover, ift � 1+ ε, then(
√
t2 − 1)−1 < 1

ε
and it follows that the above

series converges uniformly in any interval[1+ ε, a]. As indicated, this proves that
f ′(t) =∑

anP
′(t).

Next,(
t2 − 1

)
f ′(t) =

∑
an

√
t2 − 1P 1

n (t);
since fort � 1,

√
t2 − 1< t . This fact leads to the “cheap” estimate:
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(
t2 − 1

)∣∣f ′(t)
∣∣ �

∑
|an|(n+ 1)2ntn+1

�
∑

|an|(n+ 1)(2t)n+1, for t > 1.

Next, setbn = |an|(n+ 1)22n+2. For every fixedk = 0,1,2, . . . ,

(n+ k)
bn+1

bn
→ 0.

Since the left-hand side equals

(n+ k)
n+ 2

n+ 1

∣∣∣an+1

an

∣∣∣22,

this tends to zero by (2). So, it follows that

(n+ 2)
bn+1

bn
→ 0.

Since the above sequence is positive, there exists a leastn1 such that

bn+1 <
bn

n+ 2
, for n � n1.

Set

b = bn1

(n1 + 1)! .
An easy induction argument onn shows that

bn+1 <
b

(n+ 1)! , for n � n1.

Next, observe that

∑
|an|(n+ 1)(2t)n+1 =

∑
bn

(
t

2

)n+1

.

We conclude again that∑
n1

|an|(n+ 1)(2t)n+1 � be
t
2 .

Furthermore,

e− t
2

n1∑
0

|an|(n+ 1)(2t)n+1

is bounded by some constantM > 0, and hence(
t2 − 1

)∣∣f ′(t)
∣∣� (M + b)e

t
2 .

Consequently, e−st (t2 − 1)|f ′(t)| → 0 as t → ∞, for every s > 1
2 (and even

uniformly for s � 1
2 + ε). Accordingly, the second term in (12) also vanishes.
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We need one further result to complete the proof. One may recall, e.g. from
Flammer [1, p. 45], that in order to use the “bilinear concomitant” condition, we
need to interchange integration and a certain differential operator over the interval
in question. Since our interval is[1,∞), the usual continuity conditions on partial
derivatives under the integral are insufficient to guarantee the admissibility of
interchanging the order of the integral and differential operators. But, the required
condition is obtained by the following argument:

Let

Ls = a(s)
d2

ds2 + b(s)
d

ds
+ c(s)

be a second-order linear differential operator with continuous coefficients on
[1,∞). Also, letf (t) be the function considered so far. Then,

Ls

∞∫
1

e−stf (t)dt =
∞∫

1

Ls e−stf (t)dt,

where under the integral,dds , . . . , are to be replaced by partial differentiation
operators∂

∂s
, . . . . To establish this, it suffices to obtain the identity withdds and

d2

ds2 in place ofLs .
Next, observe that

∂

∂s
e−stf (t) = −e−st tf (t)

and hence,∣∣∣∣ ∂∂s e−stf (t)

∣∣∣∣� e−t t
∣∣f (t)

∣∣, for t � 1.

It follows from the results obtained in Section 2.1 that
∞∫

1

e−t t
∣∣f (t)

∣∣dt
converges and, therefore, by the Weierstrass M-test, that also

∞∫
1

∂

∂s
e−stf (t)dt

converges uniformly fors � 1.
A standard theorem of analysis, cf. Hobson [3, Vol. II, Chapter 5, Art. 246],

now implies that

d

ds

∞∫
1

e−stf (t)dt =
∞∫

1

∂

∂s
e−stf (t)dt .
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Fig. 1. Validity region.

The last integral equals

−
∞∫

1

e−st tf (t)dt .

We now repeat the argument just used, since e−t t2|f (t)| also is integrable over
[1,∞); thus, second derivatives with respect tos are also properly behaved and
the result follows forLs .

For s ∈ R, the validity region for this argument is given by the inequality
sξ � ξ0, depicted in Fig. 1. In particular, the region contains the rectangular region
ξ � ξ0, s � 1, with the boundary given by the dashed lines in Fig. 1.

For s ∈ C, the validity region can now be visualized as follows: InR3, let the
xy-plane be a copy ofC, i.e.,x = �(x) andy = �(s). Then our region is bounded
by the hyperbolic cylinderξ�(s) = ξ0 and consists of this surface together with
its “outside” in thex-direction: This is the set of all points(x, y, ξ) with xξ � ξ0.

2.4. Bilinear concomitant: connection to the spheroidal functions

We conclude with some observations concerning the details of Flammer’s [1]
discussion of the prolate spheroidal radial wave function denoted byS

(3)
n (−s2, ξ)

in Jones-Oliveira [6]. We claim that our remarks indicate why the “bilinear
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concomitant condition” is critical to our proofs of absolute and uniform series
convergence as developed above. To begin, let

Lt = d

dt

(
1− t2

) d

dt
− k2t2

be the differential operator, writing partial derivatives, of course, when applied to
a function of several variables. Next, letLs be the operator obtained by replacingt

by s, and assume that the functionf (t) used thus far satisfies a differential
equation of the form

Ltf + λf = 0,

i.e., that it is an eigenfunction ofLt . Note that the eigenvalueλ will not matter
in the sequel, except indirectly since it enters the computation of the expansion
coefficientsan in the earlier formulas. WriteL+

t for d
dt (1 − t2) d

dt , and similarly
for L+

s ; and note thatL+
t is the traditional Legendre differential operator. The

formulas 2.5.2.2, etc. of Jones-Oliveira [6] show that in our coordinate system,
the Laplacian+ is written in the form

+ = 1

s2 − t2

(
L+

t −L+
s

)
. (13)

For our purposes, next consider a kernel of the formK(s, t) = e−ast . A simple
calculation yields

+K = a2K.

We also require the following condition:(
L+

t − L+
s

)
K = 0. (14)

It is easy to verify that (14) is equivalent to(
a2 + k2)K = 0. (15)

If we let a be real, then this forcesk = ia or k = −ia. For our applications,a = s,
which is in agreement withk2 = −s2.

To simplify matters, we assume thata = 1, i.e. thatk2 = −1, so thatLt =
L+

t + t2.
We know from results obtained earlier thatK(s, t) = e−st ; in particular,

Ls

∞∫
1

K(s, t)f (t)dt =
∞∫

1

LsK(s, t)f (t)dt .

The integral on the right-hand side may also be written as
∞∫

1

LtK(s, t)f (t)dt .
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Note that (14) is used to yield the first one of Flammer’s [1, p. 45] identities.
Flammer’s second identity,

∞∫
1

[
(LtK)f − K(Ltf )

]
dt = 0, (16)

may be defined as follows: LetKt ,Ktt , . . . be the partial derivatives. Given this,
observe that

(LtK)f = (
1− t2

)
Kttf − 2tKtf + t2Kf,

K(Ltf ) = (
1− t2

)
Kf ′′ − 2tKf ′ + t2Kf.

The last terms in the two expressions are equal, so they drop out of(LtK)f −
K(Ltf ) and the difference becomes(

1− t2
)
(Kttf − Kf ′′)− 2t (Ktf − Kf ′). (17)

In order to rewrite the indefinite integral of the first summand, we next use
integration by parts:∫ (

1− t2
)
Kttf dt = (

1− t2
)
Ktf −

∫
Kt

[(
1− t2

)
f
]′ dt

= (
1− t2

)
Ktf + 2

∫
tKtf dt −

∫
Kt

(
1− t2

)
f ′;

similarly,∫ (
1− t2

)
Kf ′′ dt = (

1− t2
)
Kf ′ −

∫ [(
1− t2

)
K
]
t
f ′ dt

= (
1− t2

)
Kf ′ + 2

∫
tKf ′ dt −

∫ (
1− t2

)
Ktf

′ dt .

Taking the difference of these expressions eliminates the last integrals on the
respective second lines and this now yields∫ (

1− t2
)
(Kttf − Kf ′′)dt

= (
1− t2

)
(Ktf − Kf ′)+ 2

∫
t (Ktf − Kf ′)dt . (18)

The first term on the right-hand side is precisely the “bilinear concomitant.” Based
upon our earlier results in Section 2.1, we begin by taking the definite integral∫∞

1 in (17), and observe that the first term on the right-hand side of (18) vanishes
when evaluated between 1 and∞. The second integral in (18) is the opposite of
the second integral of (17). It now follows that (16) is verified.
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3. Conclusions

In the work of Jones-Oliveira [4,6],t is replaced byη and s is replaced by
sΞ = sξ wheres is treated as a parameter. The variables of interest areξ andη.
The coefficientsan are replaced by thedn

p(−s2), where the summation index now
is p rather thann. Finally, the integral kernel now is e−sξη, up to the constant
factor of 2

π
chosen in formula 3.3.2.8 of Jones-Oliveira [6]. The functionf (t)

thus becomesS(3)
n (−s2; ξ) as defined in formula 3.3.2.8 of Jones-Oliveira [6].

The alternate form for the prolate spheroidal radial function of the third kind is

S(3)
n =

( ∞∑
p=0,1

)∗
dn
p

(−s2)√ π

2Ξs
Kp+1/2(Ξs). (19)

Similarly, the alternate form for the prolate spheroidal radial function of the first
kind is

S(1)
n =

( ∞∑
p=0,1

)∗
dn
p

(−s2)√ π

2Ξs
Ip+1/2(Ξs). (20)

The prolate spheroidal radial functions have now be written in terms of
modified spherical Bessel functions of the first and third kinds. These alternative
representations are computationally better behaved than the traditional functions,
which are written in terms of continued fraction expansions and the spherical
Bessel, (Neumann) and Hankel functions. In a sequel, we will be apply a similar
set of transcendental basis functions to the rotationally symmetric cases of
“Cassinian ovaloids.”
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